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Abstract

This paper examines the impact of the Federal Reserve’s communication on short-term inflation

forecasts. Following the Federal Reserve’s adoption of an explicit inflation target in 2012, SPF

respondents’ four-quarter-ahead inflation forecasts display two notable behavioral shifts: (1) in-

creased confidence in their beliefs and (2) less overreactive forecasts to news, aligning more closely

with rational expectations. A key factor driving these behavioral shifts is the reduction in uncer-

tainty about trend inflation. To support this claim, I propose a parsimonious inflation expecta-

tions model with smooth diagnostic expectations. The model captures changes in both the first

and second moments of individuals’ predictive densities, providing an explanation for the decrease

in short-term forecast disagreement. In line with this mechanism, incorporating the expectations

formation framework into the New Keynesian model demonstrates that the Fed’s target announce-

ment contributes to the stabilization of realized inflation, mitigating agents’ overreactive belief up-

dating.
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1 Introduction

“Explicit inflation targeting is characterized by the announcement of an offi-

cial target for the inflation rate and by an acknowledgment that low inflation

is a priority for monetary policy.” (Goodfriend, 2004)

“Should the FOMC then take the next step and announce this number to the

public? Some have argued that such an announcement would be unneces-

sary because the Fed’s implicit inflation objective is already well understood

by the market. I am skeptical.. . . To reassure those worried about possible loss

of short-run flexibility, my proposal is that the FOMC announce its value for

the OLIR (optimal long-run inflation rate) to the public.”(Bernanke, 2004)

Echoing the collective wisdom of numerous economists, the Federal Reserve first publicly

announced its long-term inflation target of 2% in 2012. Since then, much of the litera-

ture has focused on the anchoring effect of this communication. However, disclosing the

long-term inflation target does more than merely anchor long-horizon expectations; it

also affects short-term inflation forecasts. Specifically, forecasters experience lower sub-

jective uncertainty, as reflected in the shrinking second moment of their predictive densi-

ties, and their point forecasts—representing the first moment of these densities—become

less overreactive to new information.

This paper explains the shifts in both moments through a parsimonious inflation ex-

pectations model. A key driver behind these behavioral changes is the reduction in un-

certainty in forecasters’ information sets, stemming from the transparent communication

of long-term inflation goals. By publicizing the 2% target, the Federal Reserve provides

transparent information about trend inflation, thereby reducing conditional uncertainty

regarding the trend component of inflation given the available information. This, in turn,

influences short-term inflation forecasts, as agents incorporate both trend and cyclical

components in their predictions, bringing their expectations more in line with rational

expectations.

This research sheds light on subjective uncertainty, a critical but often overlooked as-

pect of expectations formation. Subjective uncertainty refers to an individual’s percep-

tion of the level of unpredictability or lack of certainty when making forecasts. It reflects

personal beliefs, perceptions, or incomplete information, rather than objective measure-

ment. While previous research has primarily examined how far point forecasts (i.e., the

first moment) of short-run inflation deviate from long-term goals, less attention has been
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paid to this uncertainty. An well-anchored stable point forecast does not necessarily imply

low uncertainty around the forecast. For instance, a forecaster may predict inflation near

2% while also considering high risks of both deflation and inflation, indicating a lack of

confidence in the forecast. When subjective uncertainty is high, economic agents are less

confident in their beliefs, leading them to place greater weight on extreme possible future

outcomes, even in response to small shocks and noisy signals.

Kumar et al. (2015) highlight the importance of such confidence by proposing five dis-

tinct definitions of anchored expectations to evaluate whether the inflation expectations

of New Zealand firms’ managers were well-anchored. These criteria include: (1) average

beliefs closely aligned with the target, (2) limited dispersion of beliefs across agents, (3)

agents’ confidence in their beliefs, (4) minimal forecast revisions, particularly for variables

with longer forecast horizons, and (5) limited co-movement between long-term and short-

term expectations. The third criterion is particularly relevant to subjective uncertainty,

which serves as a measure of forecasters’ confidence in their point forecasts. Specifically,

it reflects the forecasters’ belief that inflation will stabilize within a specific range in the fu-

ture. If this range is not sufficiently constrained—implying a forecaster lacks confidence in

his own belief—then even small disturbances could lead to deviations from the anchored

point forecast, resulting in de-anchoring. Despite the importance of this factor, it has re-

ceived relatively little attention in the expectations formation literature. I address how

explicit quantitative communication enhances individuals’ confidence and reduces sub-

jective uncertainty, thereby indirectly contributing to another dimension of anchoring.

This research makes three key contributions. First, unlike prior studies focused on

aggregate-level long-term forecasts, this paper examines how the Federal Reserve’s pol-

icy shift affects individual inflation forecasts, especially short-term expectations forma-

tion. While aggregate forecasts have garnered substantial attention, individual forecasts

responding to monetary policy changes remain underexplored. This paper suggests that

transparent communication, which reduces uncertainty in the information set, influences

not only the conditional mean of an individual’s subjective forecast distribution but also

its conditional variance, thereby impacting both moments jointly. Consequently, this study

documents how transparent and accountable policy disclosures by monetary authorities

can alter individuals’ forecasting behaviors.

Second, I propose a parsimonious model to explain three empirical findings observed

in survey data, specifically for four-quarter-ahead inflation forecasts: 1) a reduction in

overreaction to news since 2012, 2) increased confidence in beliefs, and 3) decreased dis-

agreement among forecasters, arising from enhanced rationality. This model, in which
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forecasters share all parameters but differ only in receiving heterogeneous signals, suc-

cessfully replicates forecast patterns observed in actual data, delivering clear and inter-

pretable insights.

Finally, by incorporating the diagnostic expectations framework into a standard New

Keynesian model, this exercise demonstrates how the Fed’s explicit inflation target curbs

overreaction in expectations formation and contributes to stabilizing realized inflation.

The model bridges individual belief distortions with aggregate outcomes, highlighting the

stabilizing role of transparent policy communication.

This study builds on three strands of research to explore how policy communications

influence individual forecasts. Foremost, I develop an expectations formation model,

rooted in diagnostic expectations (Bordalo, Gennaioli and Shleifer (2018); Bordalo et al.,

2019; Bordalo et al., 2020) and smooth diagnostic expectations (Bianchi, Ilut and Saijo,

2024), to explain the overreaction of point forecasts to news and the shifts in subjective

uncertainty. Diagnostic expectations (DE), which are based on Kahneman and Tversky

(1972)’s representativeness heuristic, have been instrumental in advancing our under-

standing of individual expectations formation. When new information arrives, as mea-

sured with respect to a reference distribution based on past data, memory selectively re-

calls more vividly past events that are more associated with, or representative of, that cur-

rent news. Extending this framework by incorporating changes in uncertainty surround-

ing current and past beliefs, Bianchi, Ilut and Saijo (2024) emphasize that new informa-

tion not only updates the point estimate but also changes the conditional uncertainty

surrounding the forecasted variable. In the standard DE model by Bordalo, Gennaioli

and Shleifer (2018), the reference distribution is centered on the conditional mean of the

true density at the past point when it was generated. However, its variance matches that

of the true density based on current information. Alternatively, Bianchi, Ilut and Saijo

(2024) condition their model on only reference information, thus the reference distribu-

tion captures the uncertainty from the time when expectations were first formed, rather

than reflecting the current level of uncertainty. They call this approach "smooth diag-

nostic expectations". A key feature of Smooth Diagnostic Expectations (Smooth DE) is

that as current uncertainty declines relative to past uncertainty, expectations distortion

lessens. This aligns with the Federal Reserve’s explicit messaging on long-term inflation

goals, which has reduced both subjective uncertainty and expectations distortion. DE has

been applied to financial markets (Adam and Nagel, 2023; Bordalo et al., 2021; Maxted,

2023) and a small open economy business cycle model (Na and Yoo, 2024). It has also been

extended by L’Huillier, Singh and Yoo (2023), who incorporate the New Keynesian frame-
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work and demonstrate that the DE model outperforms the rational expectations model

in a medium-scale DSGE setting. Bianchi, Ilut and Saijo (2023) integrate distant memory

into their model, showing that the interaction between actions and DE repeatedly triggers

boom-bust cycles in response to a single initial shock.

Secondly, this paper closely relates to public communication strategies. Eusepi and

Preston (2010) and D’Acunto et al. (2020) demonstrate that communication is more ef-

fective in shaping expectations when it emphasizes policy goals and targets rather than

the specific tools used to achieve those goals. This approach is particularly impactful

for less sophisticated demographic groups. They conclude that target-based communi-

cation enhances policy effectiveness and helps build public trust in central banks, which

is crucial for the success of their policies. Similarly, Coibion, Gorodnichenko and Kumar

(2018) find that firm managers respond more strongly to information about the central

bank’s inflation target compared to other forms of information. Their experiments re-

veal that firms make the most significant adjustments to their forecasts when provided

with information about the central bank’s inflation target or recent inflation figures, in-

dicating that firms place greater confidence in signals regarding these targets. Coibion,

Gorodnichenko and Weber (2022) further demonstrate that households revise their infla-

tion forecasts more significantly in response to FOMC statements and inflation targets

delivered by the Fed compared to USA Today news articles. Despite similar information

being conveyed, the stronger response to FOMC statements suggests that respondents

may discount some information presented in newspapers. Experimental evidence sup-

ports the notion that households’ and firms’ information sets are significantly influenced

by clear guidance from monetary authorities on policy directions. Given these findings,

it is reasonable to assume that long-term inflation targets serve as strong signals to pro-

fessionals, who tend to pay closer attention to the Federal Reserve’s public speeches and

data releases. Recent studies by Coibion et al. (2024) and Kostyshyna and Petersen (2024)

demonstrate that heightened uncertainty negatively impacts household spending in ex-

perimental settings1. Distinctively, I focus on both the first and second moments of the

predictive density using extensive survey data.

Finally, to measure individual forecaster’s subjective uncertainty, I rely on Ganics, Rossi

and Sekhposyan (2024). Direct measures of expectations, such as point forecasts, are typ-

ically gathered as fixed-horizon projections in the survey data. The Survey of Professional

1Coibion et al. (2024) reveal that high uncertainty about economic growth reduces household spending,
and Kostyshyna and Petersen (2024) show that uncertainty surrounding inflation similarly has a negative
effect on spending.
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Forecasters (SPF) also conduct fixed-horizon point forecasts surveys. However, the SPF

collects density forecasts in a “fixed-event” format, making it difficult to comprehensively

observe and understand both the fixed-horizon point forecast and the uncertainty sur-

rounding it. Density forecasts in the SPF are provided for fixed events, with panelists pre-

dicting inflation and output growth for the current and following calendar years, meaning

the forecast horizon changes each quarter. Since I focus on four-quarter-ahead inflation

forecasts, the fixed-event nature of the SPF density forecasts limits their direct applica-

bility. Ganics, Rossi and Sekhposyan (2024) address this issue by proposing a method to

reshape fixed-event uncertainty into fixed-horizon uncertainty. To accomplish this, they

suggest combining current-year and next-year forecast densities through a convex combi-

nation. Using the probability integral transform (PIT) criterion, they estimate the weights

required for this combination, resulting in a correctly calibrated predictive distribution.

While Ganics, Rossi and Sekhposyan (2024) focus on aggregate-level uncertainty, I extend

this methodology to measure individual-level uncertainty. Several researchers have ex-

plored expectations uncertainty. Binder (2017) and Krüger and Pavlova (2024) introduce

a new measure of uncertainty in probabilistic survey on expectations at the individual

response level. Abel et al. (2016) find no consistent relationship between forecast uncer-

tainty and the dispersion of individual respondents’ point forecasts using ECB-SPF data.

Other studies, such as Grishchenko, Mouabbi and Renne (2019), use dynamic latent factor

models to jointly estimate inflation uncertainty and point forecasts.

The remainder of this paper is structured as follows. Section 2 provides an overview

of the survey data and inflation realizations, the key macroeconomic variable of interest.

Section 3 presents empirical findings on how individual expectation behavior changed

before and after 2012. Sections 4 and 5 lay the theoretical foundations of DE and Smooth

DE, and discuss the structural framework of this research. Section 6 analyzes the esti-

mation results and, through simulation, assesses how well the Smooth DE model which

incorporates the Federal Reserve’s long term inflation target announcement replicates the

observed data. Section 7 demonstrates that the key findings of this paper are robust re-

gardless of the estimated fundamental parameters. Section 8 presents the New Keynesian

model with Smooth DE and analyzes the responses of key variables to structural shocks.
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2 Data

This study investigates professional forecasts using the Survey of Professional Forecasters

(SPF), which is conducted in the middle month of each quarter. For instance, in the first

quarter, questionnaires are distributed to panelists by the end of January, and responses

are collected between the second and third weeks of February. The Philadelphia Fed took

over the administration of the survey from the ASA/NBER in the second quarter of 1990,

making the 1990Q2 survey the first one administered by the Philadelphia Fed.

To ensure data consistency and reliability, I exclude the period prior to 1990Q2 due

to evidence suggesting that the same identification numbers may have been assigned to

different forecasters. For example, some individuals participated, then abruptly dropped

out for several periods, and later re-entered, suggesting potential inconsistencies in the

assignment of identifiers. Unfortunately, due to the lack of hard-copy historical records

from the early surveys, the Philadelphia Fed could not investigate these cases further2.

Given my focus on individual forecasters’ expectations, I exclude these problematic peri-

ods from the analysis.

I use point forecasts to measure the conditional mean—the first moment—of the pre-

dictive distribution and density forecasts to capture the conditional variance—the second

moment—of the predictive distribution. For point forecasts, the SPF questionnaire col-

lects projections for both the quarterly and annual levels of the chain-weighted GDP price

index (PGDP). Appendix A presents the exact question asked. Survey participants provide

PGDP projections in levels, and I use their responses from the first column (PGDP1) and

the fifth column (PGDP5) to construct each forecaster’s four-quarter-ahead inflation fore-

cast.

πi
t+4,t = 100×

(
PGDP5i

t

PGDP1i
t

−1

)
. (1)

Although the Federal Reserve’s Statement on Longer-Run Goals and Monetary Policy

Strategy specifies a 2% inflation target based on the Personal Consumption Expenditures

(PCE) measure, I do not use the PCE measure for four-quarter-ahead inflation forecasts.

This is primarily because the PCE inflation survey only began in 2007, which would sig-

nificantly reduce the available data. Additionally, the SPF survey does not ask for distribu-

tional forecasts, limiting its usefulness in measuring forecast uncertainty.

2See “4. Forecasts of Individual Participants” in Survey of Professional Forecasters Documentation from
the Philadelphia Fed.
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The SPF compiles respondents’ probabilistic assessments of changes in the GDP price

index, asking them to provide a probability distribution for forecasted outcomes. Ap-

pendix B shows the exact question posed, and Section 3.2 details the construction of a

density forecast for inflation over a four-quarter horizon.

Not only short-term inflation forecasts but also long-term inflation forecasts are es-

sential to this analysis. The dispersion of individual forecast errors for long-term inflation

provides key insights into the magnitude of heterogeneous signal noise regarding trend

inflation. If economic agents form forecasts in a similar manner, yet their forecast errors

vary, this dispersion may reflect differences in the signal noise they receive. The variance

in long-run forecast errors is thus a valuable measure for estimating the magnitude of

this noise in the Federal Reserve’s communication. The analysis uses the 5-Year PCE Infla-

tion Rate (PCE5YR) forecast responses from the SPF, which align with the Federal Reserve’s

PCE-based target.

In Section 3.3, I test the predictability of forecast errors to assess the extent to which

the first moment—the conditional mean—of the subjective belief density is updated ra-

tionally. This analysis requires individual-level data on both forecast errors and forecast

revisions. Forecast errors are defined as the difference between realized and forecasted

inflation for the same period, where realized inflation is calculated using the GDP price

index. To ensure alignment with forecasters’ information sets, first-vintage data from

the Philadelphia Fed’s Real-Time Dataset for Macroeconomists is used for realized in-

flation. For instance, the inflation rate from 2000Q4 to 2001Q4 is calculated by dividing

PGDP2001Q4 value, published in the first (advance) release at 2002Q1, by the PGDP2000Q4

value from the same release. As the SPF survey is conducted between the last week of

the first month and the second week of the second month each quarter, forecasters likely

incorporate this first release into their updated information set and adjust their forecasts

accordingly 3.

3 Empirical Evidence

3.1 Statement on Longer-Run Goals and Monetary Policy Strategy

On January 24, 2012, the Federal Reserve released, for the first time, the “Statement of

Longer-Run Goals and Monetary Policy Strategy”. This statement, updated annually each

3The Bureau of Economic Analysis typically releases advance estimates of the current quarter in the last
week of the first month of the next quarter.
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January, conveys three primary pieces of information. First, it declares that a long-term

inflation rate of 2% based on the Personal Consumption Expenditures (PCE) measure is

most consistent with the Federal Reserve’s statutory mandate. As mentioned in the state-

ment, the Federal Reserve anticipates that this will not only reduce economic and finan-

cial uncertainty and enhance the effectiveness of monetary policy but also ensure that

the public’s longer-term inflation expectations become firmly anchored. The objective

announced at the beginning of the year is consistently reaffirmed in subsequent Federal

Open Market Committee (FOMC) statements.

The second piece of information pertains to the Federal Reserve’s efforts to achieve

the maximum level of employment. Unlike the clearly defined quantitative long-term in-

flation target, the Federal Reserve does not specify an employment rate target. This is

because the maximum level of employment is determined not solely by monetary policy

but also by nonmonetary factors that influence the structure and dynamics of the labor

market. Accordingly, rather than announcing a specific numerical target, the Federal Re-

serve confirms that policy decisions would be based on assessments of the maximum level

of employment, considering various indicators. Additionally, the statement provides the

most recent projection of the longer-run normal rates of unemployment4.

Lastly, the statement underscores the Committee’s aim to mitigate deviations of infla-

tion from its longer-term objective, while also addressing deviations of employment from

its evaluations of the maximum sustainable level. These objectives are typically comple-

mentary; nevertheless, in cases where they may conflict, the Federal Reserve commits to

a balanced approach in pursuing both goals. This "balanced approach" remains open to

interpretation, as the statement does not define specific metrics or weights for each objec-

tive. Instead, it suggests that deviations in employment from the Committee’s evaluations

will be treated with equal consideration as inflation deviations from the long-term tar-

get, allowing for flexibility in response to prevailing economic conditions. Over time, this

statement has undergone modifications. For instance, in 2016, the Committee introduced

additional language as follow:

The Committee would be concerned if inflation were running persistently above

or below this objective. Communicating this symmetric inflation goal clearly

to the public helps keep longer-term inflation expectations firmly anchored,

4Information about Committee participants’ estimates of the longer-run normal rates of output growth
and unemployment is published four times per year in the FOMC’s Summary of Economic Projections. The
most recent projections, such as the median estimate of FOMC participants for the longer-run normal rate
of unemployment at 4.6 percent, were omitted from the amended statement released in August 2020.

9



thereby fostering price stability and moderate long-term interest rates and en-

hancing the Committee’s ability to promote maximum employment in the face

of significant economic disturbances.

The 2016 statement introduced a symmetric inflation goal, suggesting that the Federal

Reserve was equally concerned about inflation falling below or exceeding the target. A

further notable amendment occurred in 2020, when, in an uncommon move, the state-

ment was revised in August, mid-year. Among the many changes, the following language

is particularly noteworthy:

In order to anchor longer-term inflation expectations at this level, the Com-

mittee seeks to achieve inflation that averages 2 percent over time, and there-

fore judges that, following periods when inflation has been running persis-

tently below 2 percent, appropriate monetary policy will likely aim to achieve

inflation moderately above 2 percent for some time.

At this point, the Flexible Average Inflation Target (FAIT) was introduced. The Federal Re-

serve shifted its focus away from symmetric concerns about inflation moving either above

or below the target and instead reflected a willingness to allow inflation to overshoot 2%,

aiming to offset the persistent low inflation below 2% in the long run. This approach in-

dicates the Federal Reserve’s commitment to achieving an average of 2% inflation over

time. In addition, the statement also emphasized that achieving the goals of price stability

and maximum employment in a sustainable manner requires financial stability. It noted

that policy decisions would also reflect a balance of risks, including risks to the financial

system.

Despite these changes in tone, every statement issued from 2012 through the latest

version in 2024 has consistently reaffirmed the 2% long-term inflation target. This reflects

the Federal Reserve’s clear and consistent signaling to the public, reinforcing the credibil-

ity of its commitment to price stability and anchoring inflation expectations. Moreover,

while the core message remains unchanged, subtle modifications within these statements

have provided the public with indirect yet smooth updates on current trend inflation. This

nuanced communication allows the Federal Reserve to maintain flexibility in responding

to evolving economic conditions without undermining the stability of long-term inflation

expectations.
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3.2 Subjective Uncertainty of Four-Quarter-Ahead Inflation Forecast

Since the announcement of the statement, numerous studies have examined whether the

Federal Reserve’s goal of firmly anchoring the public’s longer-term inflation expectations

has been achieved (Binder, Janson and Verbrugge, 2023, Bundick and Smith, 2023, Or-

phanides, 2019, Buono and Formai, 2018). This section aims to empirically demonstrate

that the statement has also influenced density forecasts, drawing on the theoretical foun-

dations proposed by Ganics, Rossi and Sekhposyan (2024).

In each survey, participants provide annual inflation density forecasts for both the cur-

rent and the following years, as illustrated in Appendix B. The first step is to construct the

cumulative distribution function (CDF) for a fixed-horizon density forecast, four quar-

ters ahead (h = 4)5. This CDF, denoted as F h,C
i ,t ,q (·), represents individual i ′s forecast for

h-quarters-ahead of the quarter preceding time t . It is formulated as a convex combina-

tion of two separate CDFs: F 0
i ,t ,q (·), which represents individual i ′s density forecast for the

current year, and F 1
i ,t ,q (·), corresponding to the density forecast for the next year. Before

forming this convex combination I fit a normal distribution to the each of the individual

CDFs F 0
i ,t ,q (·) and F 1

i ,t ,q (·). I borrow notations from Ganics, Rossi and Sekhposyan (2024).

F h,C
i ,t ,q (π) ≡ωh

i ,q F 0
i ,t ,q (π)+ (1−ωh

i ,q )F 1
i ,t ,q (π), such that 0 ≤ωh

i ,q ≤ 1, q ∈ {1,2,3,4}. (2)

where ωh
i ,q denotes individual forecaster i ’s unknown weight in quarter q on the cur-

rent calendar year forecast. Estimating {ωh
i ,q }4

q=1follows the methodology outlined by Gan-

ics (2018), which is based on the principle that a density forecast is probabilistically well-

calibrated if and only if its corresponding probability integral transform (PIT) follows a

uniform distribution. Therefore the weights are calculated by minimizing the distance be-

tween the PIT of the combined distribution and the uniform distribution. Notably, the PIT

is evaluated at h-quarters ahead realized inflation.

PI T h
i ,t ,q ≡ F h,C

i ,t ,q (πh
t ,q ) =ωh

i ,q F 0
i ,t ,q (πh

t ,q )+ (1−ωh
i ,q )F 1

i ,t ,q (πh
t ,q ) (3)

To calculate vertical difference between the empirical distribution function of the PIT

and the CDF of the uniform distribution at quantile r ∈ [0,1], I define :

Ψi ,T (r,ωh
i ,q ) ≡ |T |−1Σt∈T 1

[
PI T h

i ,t ,q ≤ r
]
− r (4)

5This examination looks at annual inflation rate from quarter t −1 to quarter t +3
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where T is the index set of an appropriate sample of size |T | and 1[·] denotes the in-

dicator function. Thus, |T | corresponds to the total number of years in which forecaster i

participates. However, this approach faces a challenge due to the small sample size. Ifωh
i ,q

is estimated separately for q = 1,2,3,4, the amount of available data decreases, leading to

considerable estimation uncertainty. This issue is particularly exacerbated in this study, as

it focuses on measuring weights at the individual level. To address the small sample chal-

lenge, Ganics, Rossi and Sekhposyan (2024) propose an alternative method. Instead of

estimating weights separately, they suggest parameterizing the weights using flexible ex-

ponential Almon lag polynomials, as outlined by Andreou, Ghysels and Kourtellos (2010).

The weights are specified as follows.

ωh
i ,q ≡ exp(θi ,1q +θi ,2q2), q ∈ {1,2,3,4}. (5)

In addition to this, I adopt a rolling window estimation scheme by taking T = s −R +
1, s−R+2, · · · , s where s = R,R+1, · · · ,T is the last observation of a rolling window of size R,

and T is the last available density forecast observation in i ′s responses. In this analysis, the

rolling window size is set to 20. The parameterization in the equation (5) ensures positive

weights while pooling PIT across different quarters using an exponential polynomial.

The weights are collected in the vector ωh
i ≡ (ωh

i ,1,ωh
i ,2,ωh

i ,3,ωh
i ,4) and using this formu-

lation, I estimate weights through the minimization of the scaled quadratic distance,

ω̂h
i ,q ≡ exp(θ̂i ,1q + θ̂i ,2q2), q ∈ {1,2,3,4} (6)

(θ̂i ,1, θ̂i ,2)> ≡ ar g mi n
θi ,1,θi ,2∈Θ

∫
ρ

Ψ2
i ,T (r,ωh

i ,q )

r (1− r )
dr (7)

where the parameter space Θ is chosen to ensure that the estimated weights satisfy

0 < ω̂h
i ,q ≤ 1 for q ∈ {1,2,3,4}, and they are non-increasing in q 6. I use ρ = [0,1] that is a

finite union of neither empty nor singleton, closed intervals on the unit interval, in which

domain I want to minimize the distance between the empirical CDF of the PIT and the

uniform CDF.

Using the estimated weights ω̂h
i ≡ (ω̂h

i ,1,ω̂h
i ,2,ω̂h

i ,3,ω̂h
i ,4), derived from θ̂i ,1 and θ̂i ,2, the

mixture distribution and its CDF F h,C
i ,t ,q (π) are obtained. The standard deviation of the

fixed-horizon density forecast reflects subjective uncertainty. In Figure 1, the blue line

6The rationale behind this restriction is that, intuitively, as moving from quarter q to q +1, I aim to avoid
assigning greater weight to the current year’s forecast in q +1 than was assigned in quarter q
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Figure 1: Subjective Uncertainty in Fixed-Horizon Forecast Densities

with circles shows the median of the individual standard deviations for each time period.

These standard deviations are computed for each individual’s density forecast, and the

median is plotted. Notably, the standard deviation begins to decrease after 2012Q1 and

remains low until economic volatility rises again with the onset of Covid-19.

To provide a more robust measure of subjective uncertainty, I also use the interquartile

range (IQR) of each forecaster’s density forecast. Unlike standard deviation, the IQR pro-

vides the central 50% of the distribution and is less affected by outliers, making it partic-

ularly useful for skewed or multimodal distributions. By looking into the IQR, I minimize

the influence of irregularities, especially when two fixed-event distribution means differ

significantly or outliers are present. The median IQR values offer a more robust measure

of subjective uncertainty and are plotted as the solid red line.

Figure 1 illustrates that both the IQR and standard deviations confirm a sharp decline
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in inflation forecast uncertainty since 2012, suggesting that individual forecasters have

become increasingly confident in their projections. It is important to note that this pat-

tern does not result merely from data adjustments or transformations during the estima-

tion process. To ensure a robust comparison, I calculate standard deviations from nor-

mal distribution-fitted fixed event densities for each survey vintage, avoiding the use of

weighted averages. The median standard deviation is then derived for each quarter. The

results reveal a significant reduction in subjective inflation forecast uncertainty across all

horizons—from one to four quarters—since 2012, as further detailed in the Appendix C.

This trend corroborates the findings in Figure 1.

This declining pattern cannot be simply attributed to stable economic environments.

While some may argue that it results from the stabilized conditions following the Great

Recession of 2007–2009, this is not necessarily the case. If economic stability were the

sole driver, we would expect a similar reduction in forecast uncertainty across other key

macroeconomic variables. To test this, I assess forecasters’ subjective uncertainty in real

GDP and civilian unemployment rate predictions around 2012. However, the probabilis-

tic forecast survey for the civilian unemployment rate only began in the second quarter of

2009, limiting the available early data. As a result, the Ganics, Rossi and Sekhposyan (2024)

methodology restricts the ability to observe changes in uncertainty before and after 2012
7. To address this limitation, I fit a normal distribution to fixed-event density forecasts for

real GDP growth and the unemployment rate, deriving standard deviations and plotting

the quarterly median. Appendix D shows that there are no significant differences in prob-

abilistic forecasts for these variables around 2012. This supports the conclusion that the

Statement on Longer-Run Goals and Monetary Policy Strategy, which clarifies long-term

inflation targets, has a direct impact on inflation forecasts without affecting uncertainty

for other macroeconomic variables.

3.3 Over-reaction of Inflation Point Forecasts

As the second moment of the predictive density decreases, it naturally raises the question

of whether the first moment, or conditional mean (point forecast), is also affected, poten-

tially causing shifts in forecast trends or directions before and after 2012. At the individual

level, the average forecaster appears to overreact to private information, a phenomenon

7In the analysis, 20 quarters of survey data are used in a rolling window to estimate weights for density
forecasts. For the civilian unemployment rate, responses up to 2014Q2 are used to produce the first fixed-
horizon forecast for 2016Q1
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Bordalo et al. (2020) empirically verify and explain through the DE model. Coibion and

Gorodnichenko (2015) introduce the CG test to provide evidence of information rigidities,

with the CG test coefficient reflecting the degree of rigidity, consistent with both sticky-

information and noisy-information models. They demonstrate that, at the aggregate level,

systematic predictability of forecast revisions on forecast errors results in a positive CG test

coefficient when information rigidities are present.

In contrast, Bordalo et al. (2020) apply the CG test at the individual level and find a

negative CG coefficient, indicating individuals’ over-reactive expectations in response to

news. In my analysis, following Bordalo et al. (2020), I apply the CG test at the individual

level by dividing the data into pre-2012 and post-2012 periods, where a distinct declining

trend of subjective uncertainty is evident in Figure 1.

The version of the CG test by Bordalo et al. (2020) is

πt+4 −πi
t+4|t =β0 +β1(πi

t+4|t −πi
t+4|t−1)+εi

t ,t+4 (8)

where forecast revisions, πi
t+4|t −πi

t+4|t−1, quantifies new information received by indi-

vidual i and πt+4−πi
t+4|t represents individual i ’s forecast errors. If β1 > 0, it suggests that

the average forecaster underreacts to her own information, whereas β1 < 0 indicates over-

reaction. A negative β1 indicates that the average forecaster is excessively optimistic when

forecast revisions are positive - that is, when the current news points to a more favorable

future state compared to the previous information set. Importantly, under rational expec-

tations, β1 = 0, even in the presence of information frictions. In the individual-level CG

test, β1 does not directly indicate the presence or absence of information frictions. A ra-

tional forecaster may encounter information frictions stemming from inattention or noisy

signals, but as long as the forecaster updates her beliefs rationally, forecast errors will re-

main unpredictable. If the forecaster has updated expectations rationally based on the

available information, forecast revisions would not systematically predict forecast errors.

Therefore, if there is no correlation between forecast revisions and forecast errors, it sug-

gests that an average forecaster updates her expectations rationally, even with information

frictions.

Table 1 exhibits that the pattern of overreaction in individual forecasts has weaken

since 2012. Specifically, while β1 turns positive after 2012, it remains statistically insignif-

icant, suggesting that forecasters now form expectations closer to rational expectations

for four-quarter-ahead inflation, with less sensitivity to new information. The Federal Re-

serve’s additional communication on longer-run inflation has helped moderate overreac-
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1990Q2-
2011Q4

2012Q1-
2022Q1

1990Q2-
2022Q1

1990Q2-
2011Q4

2012Q1-
2022Q1

1990Q2-
2022Q1

β0
−0.231∗∗∗

(0.079)

0.241
(0.238)

−0.062
(0.105)

- - -

β1
−0.316∗∗∗

(0.070)

0.087
(0.175)

−0.147
(0.103)

−0.361∗∗∗

(0.069)

0.066
(0.128)

−0.194∗∗

(0.090)

Obs. 2229 1142 3449 2221 1137 3438

FE No No No Yes Yes Yes

Note: CG test results using IV regression. Obs. indicates the sample size. Robust standard errors

are in parentheses;∗∗∗indicates significance at the 1% level. ∗∗indicates significance at the 5% level,

and ∗indicates significance at the 10% level.

Table 1: CG Test Results at Individual Level

tion in short-horizon inflation forecasts. As a result, forecasters incorporate this new mes-

sage, leading to a decrease in subjective uncertainty, which in turn boosts their confidence

in their beliefs without exaggerating extreme forecast scenarios. In sum, the Statement of

Longer-Run Goals and Monetary Policy Strategy has jointly influenced both the first and

the second moments of the predictive density, particularly for short-term horizons.

This observation suggests that clearer and more consistent communication from pol-

icymakers has been key to moderating overreaction patterns typically seen in individual

forecasting behavior. Even when compared to the real GDP growth rate and the unem-

ployment rate CG test results provided in the Appendix E, this is a distinctive feature of in-

flation forecasts. The point forecasts for the real GDP growth rate and the unemployment

rate tend to exhibit slightly stronger overreaction to news since 2012. To investigate the

mechanisms driving these changes – observed uniquely in inflation forecasts – I present

the analysis using the Smooth DE framework.

4 Diagnostic Expectations and Smooth DE

The key distinction between Smooth DE and DE lies in changes in conditional uncertainty.

In Smooth DE, the degree of overreaction depends on the current level of uncertainty

about the state relative to the reference uncertainty formed in the past. Before delving

into the specifics of Smooth DE, it is important to first understand the foundation laid by

the DE model, which serves as the basis for these extensions.
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4.1 Diagnostic Expectations

Bordalo, Gennaioli and Shleifer (2018) introduce the DE framework, which explains how

survey forecasts become overly optimistic following good news and overly pessimistic af-

ter bad news. This overreaction, especially prominent in credit markets, challenges the

assumptions of rational expectations theory. As an alternative, the authors propose the

DE model, which draws on Kahneman and Tversky (1972)’s concept of ‘representative-

ness heuristic’. The DE framework integrates both overextrapolation and the neglect of

risk.

In the DE model, forecasters reassess the likelihood of future outcomes based on ‘rep-

resentativeness’. When forming forecasts about future economic states, individuals oper-

ating under the DE mechanism do not assess the distribution of a future state using the

true conditional distribution given current news or realizations. Although this information

is stored in their memory, when new information arrives, they compare the likelihood of

certain future states given current news (updated information set) to that derived from ref-

erence information which has not incorporated the news. Because of memory limitations,

agents cannot recall information perfectly; instead, they quickly recall certain ‘represen-

tative’ states—specifically, those that seem more likely based on new information. These

states are the ones whose likelihood increases the most when compared to their previous

beliefs or ‘reference memory’, which was shaped by past information. As a result, indi-

viduals overweigh these representative states, distorting the objective likelihood. Bordalo,

Gennaioli and Shleifer (2018) formalize ‘representativeness’ as

r ept = h(ω̂t+1|G)

h(ω̂t+1|−G)
,

where ω̂t+1 is the forecasted variable, G represents updated information, serving as a

posterior group that incorporates the latest news, while −G denotes reference informa-

tion, which serves as a reference group without incorporating the latest news. A certain

expected outcome ω̂t+1 is more representative if it occurs more frequently given news (G)

relative to the reference memory (−G), and this state ω̂t+1 comes to minds faster than

other possible states. This representativeness distorts the objective density in the minds

of decision-makers, leading them to form a biased subjective density. The distorted sub-

jective density is expressed as
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hθ
t (ω̂t+1) = h(ω̂t+1|G)

[
h(ω̂t+1|G)

h(ω̂t+1|−G)

]θ 1

Z

where Z is a normalizing constant. As θ increases, the tendency to oversample repre-

sentative states becomes stronger, resulting in greater distortion of the objective density.

Building on this distorted density, the diagnostic belief is formalized as follows.

Proposition 1. When the process for ωt is AR(1) with normal (0,σ2) shocks, the diagnostic

distribution hθ
t (ω̂t+1) is also normal, with variance σ2and mean

Eθt (ωt+1) = Et (ωt+1)+θ[Et (ωt+1)−Et−1(ωt+1)].

Proof. See Appendix in Bordalo, Gennaioli and Shleifer (2018).

Eθt represents diagnostic expectations, while Et , the expectation operator without the

superscript θ, represents rational expectations. Both Et (ωt+1) and Et−1(ωt+1) represent

the conditional mean of rational expectations from the true density. It is assumed that

the variance of diagnostic distribution σ2 is identical to that of the fundamental shocks.

Under rational expectations, θ equals zero, and the DE model collapses to rational ex-

pectations. This implies that agents have no memory limitations, allowing them to recall

information perfectly and update their beliefs rationally. On the other hand, when θ > 0,

diagnostic expectations overreact to the information. A positive θ means that agents eval-

uate the likelihood ratio based on representativeness, and θ measures the severity of this

distortion. Due to the distorted probability density in their incomplete memory, agents’

oversampling of representative states significantly influences their expectations.

Consequently, while individuals may hold rational expectations in the back of their

minds, diagnostic expectations are unconsciously distorted by the representativeness heuris-

tic. This heuristic causes forecasters to overemphasize certain aspects of the information

received, thereby distorting the objective distribution in their forecasts.

4.2 Smooth Diagnostic Expectations

Bordalo et al. (2020) and Bordalo, Gennaioli and Shleifer (2018) assume that subjective un-

certainty is equivalent to objective uncertainty. A key innovation in Bianchi, Ilut and Saijo
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(2024)’s Smooth DE framework is the disconnection of objective and subjective uncer-

tainty. They relax the rigid assumption that subjective uncertainty must mirror objective

uncertainty. This shift acknowledges that if the first moment of expectations is distorted,

it is reasonable to expect the second moment to be affected as well. Despite this intuition,

the standard DE models do not focus on the role of uncertainty until Bianchi, Ilut and Saijo

(2024) highlight the importance of changes in conditional uncertainty in shaping expec-

tations.

The change in conditional uncertainty is represented as

Rt+h|t ,t−J ≡
σ2

t+h|t
σ2

t+h|t−J

(9)

whereσ2
t+h|t−J is the variance of the true density conditional on reference information

set (in my model, reference information set is the information set from the immediately

preceding period, J = 1) and σ2
t+h|t is the variance conditional on the current updated

information set8. Forecasters retrieve memory selectively, leading to a distorted density

f θ(xt+h |It ) affected by representativeness.

f θ(x̂t+h |It ) = f (x̂t+h |It )

[
f (x̂t+h |It )

f (x̂t+h |I r e f
t )

]θ
1

Z
(10)

In my model I
r e f
t is the information set updated in the preceding period, It−1.

Proposition 2. (Smooth DE) Consider the reference group given by density in equation

f (x̂t+h |I r e f
t−J ) = N(x̂t+h ;µt+h|t−J ,σ2

t+h|t−J ). Denote the ratio variances for the current and

reference groups as

Rt+h|t ,t−J ≡σ2
t+h|t /σ2

t+h|t−J

If Rt+h|t ,t−J < (1+θ)/θ, the Smooth DE density f θ(x̂t+h |It ) in equation (10) is Normal

with conditional mean

Eθt (xt+h) =µt+h|t +θ
Rt+h|t ,t−J

1+θ(1−Rt+h|t ,t−J )
[µt+h|t −µt+h|t−J ] (11)

and conditional variance is
8 J ≥ 1 allows distant memory for reference information set.
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Vθt (xt+h) =
σ2

t+h|t
1+θ(1−Rt+h|t ,t−J )

. (12)

Proof. See Appendix in Bianchi, Ilut and Saijo (2024).

µt+h|t and µt+h|t−J represent the conditional mean of rational expectations from the

true density. The term Rt+h|t ,t−J plays a critical role in both the conditional mean, Eθt (xt+h),

and variance, Vθt (xt+h). In Bianchi, Ilut and Saijo (2024), they highlight three key features

of Smooth DE as introducing the effective distortion parameter

θ̃t ,t−J ≡ θ
Rt+h|t ,t−J

1+θ(1−Rt+h|t ,t−J )
. (13)

The effective distortion parameter θ̃t ,t−J measures how much the conditional mean,

in effect, overreacts to new information. This time-varying parameter reflects how much

uncertainty is resolved as new information is incorporated. When current information

significantly reduces uncertainty compared to reference information formed in the past,

the role of retrieved memory diminishes. As uncertainty decreases, reliance on represen-

tativeness is reduced, allowing forecasters to depend more on precise information about

the current state. This results in a conditional density, f θ(x̂t+h |It ), that is closer to the

true density.

Within the standard DE framework, it is impossible to demonstrate that the distortion

parameter varies over time; it remains constant throughout. In contrast, in the smooth DE

model, the effective distortion parameter, θ̃t ,t−J , evolves over time, influenced by changes

in the level of conditional uncertainty. Furthermore, the standard DE model does not sup-

port the evidence that agents tend to exhibit lower subjective uncertainty as they receive

more transparent signals. In the standard DE model, agents’ subjective uncertainty always

aligns with true uncertainty. The smooth DE model is crucial because it explains joint

changes in the conditional mean and variance of the belief distribution by incorporating

Rt+h|t ,t−J .

5 Model

In this section, with smooth DE, I propose a parsimonious model of individuals’ expec-

tations formation for four-quarter-ahead inflation. It is assumed that agents update their

beliefs about unobservable components upon receiving signals that convey both informa-

tion about the underlying states and noise.
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5.1 Inflation Dynamics

Inflation is modeled as the sum of two unobserved components: a permanent trend com-

ponent τt and transitory cyclical component (i.e., the inflation gap) εt , which follows an

AR(1) process with persistence ρε.

πt = τt +εt (14)

This trend-cyclical decomposition builds upon the foundational work of Stock and

Watson (2007) and is further developed by more recent studies, including those by Chan,

Clark and Koop (2018), Mertens (2016), Mertens and Nason (2020), Nason and Smith (2021).

Mertens and Nason (2020) and Nason and Smith (2021) analyze inflation forecasts within

a sticky information framework incorporating average forecasts, demonstrating that grad-

ual adjustments in forecasts during the high-inflation period of the 1970s led to persistent

forecast errors until the Volcker disinflation. Their work also highlights the increased stick-

iness in inflation forecasts following this period.

This paper contributes to the existing literature by applying a noisy information model,

analyzing individual-level panelist forecasts instead of aggregate forecast data, offering a

novel perspective on the individual level expectations formation.

5.2 State-Space Model

Forecasters make multi-period-ahead inflation forecasts by combining their predictions

of the trend component, τt+h , and the cyclical component, εt+h . To generate these fore-

casts separately, agents update their beliefs about the current states τi ,θ
t |t and εi ,θ

t |t , based

on the information available at time t . Forecasters update in a forward-looking way in the

sense that forecasts take the variable’s true persistence into account, even if they overreact

to news9.

9Note that, since the expectations formation rule is forward-looking, τi
t+h|t = 1hτi

t |t , given the random

walk process, and εi
t+h|t = ρh

ε ε
i
t |t , given the AR(1) process.
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E
i ,θ
t (πt+h) = Ei ,θ

t (τt+h)+Ei ,θ
t (εt+h)

= Ei ,θ
t (τt )+ρh

εE
i ,θ
t (εt )

=
(

1 ρh
ε

)(
τi ,θ

t |t
εi ,θ

t |t

)

where h = 4, τi ,θ
t |t = Ei ,θ

t (τt ) and εi ,θ
t |t = Ei ,θ

t (εt ) represent individual i ’s updated trend and

cyclical components, respectively, both distorted by θ, given the information available at

time t . The expectation operator Ei ,θ
t reflects individual i ’s Smooth DE. The parameter θ

captures the extent of the departure from rational expectations.

The transition equation, a key part of the state-space model, remains unchanged be-

fore and after 2012, reflecting the (conservative) assumption that the data generating pro-

cess for πt does not change.(
τt

εt

)
=

(
1 0

0 ρε

)(
τt−1

εt−1

)
+

( √
1−γσ 0

0
p
γσ

)(
ut ,τ

ut ,ε

)
(15)

The total variance of the innovations to πt , conditional on time t − 1 information, is

σ2. The share of this variance attributed to shocks to the trend component τt is 1 − γ
while the remaining share γ is attributable to the cyclical component εt . ut ,τ and ut ,ε are

independent and follows standard normal distributions, ut ,τ ∼N(0,1) and ut ,ε ∼N(0,1).

At each time t , the target variables τt+h|t and εt+h|t are forecasted. To make these fore-

casts, forecasters must update their beliefs about the current states τt and εt , which are

unobservable. Instead of direct observation, they rely on noisy signals that contain infor-

mation about these states. Forecasters, therefore, infer τt and εt based on these signals.

From this point forward, we assume the signal structure is exogenous.

5.2.1 Signal Structure Prior to the Statement: 1990Q2–2011Q4

Before 2012, agents receive only one signal that contains information about both τt and

εt , but they cannot disentangle which portion corresponds to each component. Agents

receive private signals, leading to heterogeneity in forecasts. Each agent’s signal noise is

drawn from a standard normal distribution νi
t ,τε ∼ N(0,1), and size of the noise is repre-

sented by σν,τε
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Si
t ,τε =

(
1 1

)(
τt

εt

)
+σν,τεν

i
t ,τε. (16)

I will henceforth refer to the signal Si
t ,τε as the ‘mixed signal’.

5.2.2 Signal Structure After the Statement: 2012Q1–2021Q4

From 2012 onward, agents begin receiving an additional signal from the Statement on

Longer-Run Goals and Monetary Policy Strategy, which clarifies the Federal Reserve’s long-

term inflation target. As its nuances evolve and shift over time, this signal indirectly con-

veys information about the current trend inflation, τt , while also providing the Federal

Reserve’s viewpoint on the current economic situation. The noise associated with this

signal, νi
t ,τ, varies across agents, reflecting different levels of trust in the Federal Reserve.

For example, an agent with high confidence in the Fed’s ability to maintain price stability

would have νi
t ,τ close to zero, perceiving the signal with little noise. Conversely, an agent

skeptical of the Federal Reserve’s commitment, perhaps due to concerns about financial

stability or labor market conditions, would perceive a much noisier signal, with νi
t ,τ devi-

ating significantly from zero. These differences in trust are reflected in the SPF data. Even

after the Federal Reserve’s long-term target has been shared, disagreement in 5-year PCE

forecasts across agents persists, as evidenced by the IQR of forecasts in Figure 2.

The IQR indicates that while disagreement in long-term inflation forecasts gradually

decreases following the announcement, it does not completely dissipate. This gradually

diminishing (but still existing) disagreement highlights the heterogeneity in agents’ recep-

tion of publicly accessible signals. Even when exposed to the same information, agents

interpret it differently based on their individual trust in the Federal Reserve’s credibility,

leading to heterogeneous signal reception.

The measurement equation since 2012 can be represented as(
Si

t ,τ

Si
t ,τε

)
=

(
1 0

1 1

)(
τt

εt

)
+

(
σν,τ 0

0 σν,τε

)(
νi

t ,τ

νi
t ,τε

)
. (17)

Here, σν,τε and σν,τ represent the magnitudes of the noise terms. The noise terms

νi
t ,τε and νi

t ,τ are both assumed to follow a standard normal distribution, N(0,1), and σν,τ

captures the magnitude of noise in the trend signal. I will refer to the signal Si
t ,τ as the

‘trend signal’. Note that the signal structure represents each forecaster’s perceived model

of πt , which is not necessarily the same as the true data-generating process.
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Note: The red line represents the interquartile range of 5-year PCE forecasts. To capture a wider range of

forecasts, the blue dashed line shows the difference between the 90th and 10th percentiles of 5-year PCE

forecasts. The gap between forecasts ranked at the 90th and 10th percentiles among survey participants has

significantly narrowed since 2012.

Figure 2: Belief Dispersion of 5-Year-Ahead PCE Forecasts

5.3 Smooth Diagnostic Expectations

Given the state-space model, individuals update their information sets and beliefs. The

true densities conditional on the current information set and the reference information

set obtained in the preceding period are

f (τ̂t+h , ε̂t+h |I i
t ) =N

(
τi

t+h|t
εi

t+h|t
,Σt+h|t

)

f (τ̂t+h , ε̂t+h |I i ,r e f
t ) =N

(
τi

t+h|t−1

εi
t+h|t−1

,Σt+h|t−1

)

where τi
t+h|t = Ei

t (τt+h) and εi
t+h|t = Ei

t (εt+h) represent individual i ’s Bayesian rational

expectations, unaffected by the heuristic. Instead of applying these true densities, fore-

casters use a distorted density, defined as

f θ(τ̂t+h , ε̂t+h |I i
t ) = f (τ̂t+h , ε̂t+h |I i

t )

[
f (τ̂t+h , ε̂t+h |I i

t )

f (τ̂t+h , ε̂t+h |I i ,r e f
t )

]θ
1

Z
(18)
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where Z is a constant of integration, and θ is assumed to be greater than zero (θ > 0). If

θ = 0, this implies that forecasts are formed without distortion, in a fully rational manner.

A key concept here is representativeness,

r ep(τ̂t+h , ε̂t+h) ≡ f (τ̂t+h , ε̂t+h |I i
t )

f (τ̂t+h , ε̂t+h |I i ,r e f
t )

,

which measures the extent to which a forecaster, when faced with current news, sub-

jectively assigns higher or lower likelihoods to future outcomes (τ̂t+h , ε̂t+h) relative to past

reference information. This process triggers selective recall, with possible future out-

comes of higher relative frequency being recalled more strongly. When θ = 0, the heuristic

does not influence expectations, and forecasts are based purely on the objective condi-

tional probability f (τ̂t+h , ε̂t+h |I i
t ). Notably, r ep(τ̂t+h , ε̂t+h) is affected not only by changes

in the conditional mean but also by changes in the conditional variance— by shifts in

Σt+h|t and Σt+h|t−1, which measure the uncertainty of the current distribution with re-

spect to the reference distribution —when the information set is updated. As beliefs are

updated, the ratio of conditional uncertainties, denoted by Rt+h|t ,t−1, plays a crucial role

in the smooth diagnostic expectations formation process. To account for this adjustment

in conditional uncertainty in relation to the severity of distortion, the effective distortion

parameter θ̃t ,t−1 is adopted.

Proposition 3. Let the reference group of variables, τt and εt , be given for the period imme-

diately preceding the current one. The ratio of the conditional variance matrices between

the current period, t , and the reference period, t −1, is defined as a 2-by-2 matrix given by

Rt+h|t ,t−1 ≡Σt+h|tΣ−1
t+h|t−1.

If Rt+h|t ,t−1 < { 1+θ
θ

}I , where I is the 2-by-2 identity matrix, the smooth DE density is

normally distributed with the conditional mean before 2012 expressed as
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E
i ,θ
t (πt+h) =

(
1 ρh

ε

)(
τi ,θ

t |t
εi ,θ

t |t

)

=
(

1 ρh
ε

)[(
τi

t |t−1

εi
t |t−1

)
+ (

I + θ̃t ,t−1
)

Kt

(
Si

t ,τε−τi
t |t−1 −εi

t |t−1

)]

=
(

1 ρh
ε

)[(
τi

t |t−1

εi
t |t−1

)
+ (

I + θ̃t ,t−1
)

Kt

(
Si

t ,τε−
(

1 1
)(

τi
t |t−1

εi
t |t−1

))]

and the conditional mean after 2012

E
i ,θ
t (πt+h) =

(
1 ρh

ε

)(
τi ,θ

t |t
εi ,θ

t |t

)

=
(

1 ρh
ε

)[(
τi

t |t−1

εi
t |t−1

)
+ (

I + θ̃t ,t−1
)

Kt

((
Si

t ,τ

Si
t ,τε

)
−

(
1 0

1 1

)(
τi

t |t−1

εi
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where effective distortion matrix θ̃t ,t−1 = θRt+h|t ,t−1
(
I +θ(I −Rt+h|t ,t−1)

)−1. The vari-

ance is formulated as

Vθt (πt+h) =Σt+h|t
(
(1+θ)I −θΣt+h|tΣ−1

t+h|t−1

)
−1

=Σt+h|t
(
I +θ(I −Rt+h|t ,t−1)

)−1 .

Proof. See Appendix G.

The Kalman gain matrix, Kt , changes over time. Since 2012, with the addition of a

new signal, the Kt matrix shifts from a 2-by-1 to a 2-by-2 matrix structure. The reduc-

tion in uncertainty, Rt+h|t ,t−1, takes the form of a 2-by-2 matrix throughout all periods10.

Rt+h|t ,t−1 < { 1+θ
θ

}I guarantees the variance of the resulting distorted normal distribution

is finite and positive.

10In Bianchi, Ilut and Saijo (2024), Rt+h|t ,t−1 is defined as ‘the ratio of conditional uncertainty,’ which can
rise or fall as the information set is updated. In particular, during an uncertainty shock—when updated
information becomes more uncertain— Rt+h|t ,t−1may increase. However, in my setting, I assume that as
information is updated and the latest news is incorporated, uncertainty in the information set decreases,
based on the assumption of a stable economy. For simplicity, I refer to Rt+h|t ,t−1 as the reduction in uncer-
tainty.
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Proposition 4. The effective distortion matrix θ̃t ,t−1 decreases in a reduction in uncertainty

Rt+h|t ,t−1.

∂θ̃t ,t−1

∂Rt+h|t ,t−1
> 0

Proof. See Appendix H.

In the smooth DE model, θ̃t ,t−1 is positively associated with the ratio of variances

Rt+h|t ,t−1. The distortion parameter θ captures the degree to which the diagnostic den-

sity inflates the probability of representative states and is constant. However, the effective

degree of this amplification—represented by θ̃t ,t−1 —varies over time, as it is scaled by

Rt+h|t ,t−1. Thus, if Σt+h|t is much smaller than Σt+h|t−1, due to highly precise news in the

current period, the effective magnitude of distortion declines as Rt+h|t ,t−1 decreases. It

directly relates to how excessively news influences agent’s forecasts. Therefore the first

moment of smooth DE density, Ei ,θ
t (πt+h), is influenced by Rt+h|t ,t−1 adjusting θ̃t ,t−1. In

practice, the Federal Reserve’s explicit communication about the 2% inflation target in

early 2012 significantly contributed to reducing uncertainty surrounding the trend com-

ponent τt which is embedded in Σt+h|t . This reduction in uncertainty is particularly siz-

able following the Federal Reserve’s first statement in 2012. This clarity reduces forecast-

ers’ reliance on selectively recalled reference information when estimating the trend com-

ponent.

Moreover, subjective uncertainty, denoted by Vθt (πt+h), is tied to the ratio of condi-

tional variances, Rt+h|t ,t−1, implying that reduced uncertainty also diminishes subjective

uncertainty in forecasts. Forecasters experience a reduction in uncertainty of the current

distribution with respect to the reference distribution as incoming news delivers more pre-

cise information. Thus, they overstate how precise their updated belief is. This leads to

lower uncertainty surrounding their point forecasts, higher confidence in their forecasts.

This relationship is evident in the SPF data, where a notable decline in subjective uncer-

tainty is observed following the Federal Reserve’s communication in 2012. Consequently,

forecasters base their estimates on clearer, current information, reducing reliance on the

representativeness heuristic and imperfect memory recall, resulting in smaller distortions

in belief updates.

Corollary 1. As θ̃t ,t−1 decreases, heterogeneity across individual forecasts decreases because

less weight is given to signals that induce heterogeneity in the information individuals re-
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ceive.

Additionally, a reduction in uncertainty leads to less dispersion across inflation fore-

casts. The effective distortion parameter, θ̃t ,t−1, serves as an amplifying factor for news.

Forecast heterogeneity arises only from the heterogeneous signals that agents receive.

When the amplifying factor decreases, each agent places less weight on news in form-

ing their inflation expectations. Consequently, individual forecasts become more aligned

with rational expectations as they become less sensitive to heterogeneous signals, thereby

reducing disagreement among agents.

6 Estimation

The model is estimated in two stages. In the first stage, I estimate the parameters gov-

erning the law of motion in inflation using GDP Price Index data from 1990Q2 to 2021Q4.

With these estimates, I proceed to estimate the distortion parameter and the magnitude

of signal noises using the simulated method of moments (SMM). This two-step approach

addresses the difficulty of estimating all parameters simultaneously through SMM, espe-

cially given the presence of latent variables, which complicates the selection of appropri-

ate target moments. To overcome this, I first apply Bayesian estimation to pin down the

parameters related to the law of motion, and subsequently use SMM to estimate the dis-

tortion parameter and signal noise.

6.1 Bayesian Estimation

Assuming that agents share true values for ρε,γ and σ in the equation (15), I use Bayesian

estimation along with a state space model to estimate the parameters ρε,γ, and σ. In the

state space model, a transition equation is same as equation (15) and the measurement

equation is

yt =
(

1 1
)(

τt

εt

)
(19)

where yt represents realized inflation from Philadelphia Fed’s Real-Time Dataset for

Macroeconomists.

The parameter estimates are reported in Table 2. I report mean posterior estimates,

along with the 90% posterior interval. I generate 100,000 draws using the Metropolis–
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Parameters Prior Posterior Mean Std. Error Posterior Distribution (90%)

ρε N 0.377 0.105 [0.204, 0.551]
γ B 0.701 0.108 [0.509, 0.867]
σ2 IG 0.237 0.028 [0.195, 0.286]

Table 2: Estimated Parameters

Hastings algorithm and discard the first 10% as initial burn-in. Further methodological

details are presented in the Appendix F.

6.2 Simulated Method of Moments

The advantage of using SMM lies in its flexibility. SMM is highly flexible and can be ap-

plied to a wide variety of models, including non-linear and dynamic models where tra-

ditional estimation methods (e.g., maximum likelihood) may be difficult or impossible to

use. Rather than relying on predefined distributions, SMM leverages simulated data from

the model itself, allowing for greater flexibility in application. Furthermore, while the pro-

posed expectations formation model benefits from simplicity and transparency, it is ac-

companied by the possibility of misspecification. In such cases, moment-based methods

like SMM are generally more reliable than other estimation techniques.

Building on this foundation, I apply SMM to estimate key parameters by aligning the

variances of forecast errors and forecast revisions—moments that are both observable in

the data and tied closely to the parameters being estimated. According to the law of total

variance, the variance of forecast errors can be broken down into two components: (i) the

average variance of errors across agents and (ii) the variance over time of consensus errors.

The former provides information about size of noise in signals (σν,τε,σν,τ) while the latter

captures the overreaction parameter θ. This reasoning similarly applies to the variance of

forecast revisions.

The objective is to estimate parameter values that best align with the variances of fore-

cast errors (FE) and forecast revisions (FR), aggregated across time and agents. I propose

a range of possible values for θ,σν,τε and σν,τ. The target moments are the variances of FE

and FR for PGDP forecasts and the variance of FE for 5-Year PCE Inflation Rate (PCE5YR)

forecasts. To identify the optimal parameters, I construct a three-dimensional grid, divid-

ing the range of θ into 13 slices, σν,τε into 9 slices and σν,τ into 15 slices. Out of resulting

1,755 combinations (13×9×15) , I select the one that minimizes the distance between the
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variances of simulated and observed FE and FR in the survey data.

During the pre-2012 period, from 1990Q2 to 2011Q4, forecasters receive a signal con-

taining a mixture of information about both τt and εt , which they use to update their

forecasts τi ,θ
t |t and εi ,θ

t |t . For this period, I minimize the sum of two distances: the distance

between the model-implied variance of forecast errors and the variance of observed fore-

cast errors from PGDP inflation forecasts, and the distance between the model-implied

variance of forecast revisions and the variance of observed forecast revisions. Long-run

inflation forecast errors captured by the PCE5YR data from the SPF are unnecessary over

this period, as the trend signal Si
t ,τ begins to play a role in the model starting in 2012.

Beginning in 2012, with the introduction of the long-run inflation target, an additional

parameter, σν,τ, is incorporated into the model. To accommodate this change, I utilize

PCE5YR survey data, which provides long-run inflation forecasts. Accordingly, the min-

imization objective is adjusted to account for the distance between the variance of sim-

ulated long-run inflation forecast errors and the variance of observed long-run inflation

forecast errors.

To estimate the model parameters, I employ a two-stage SMM approach. In the first

stage, I search for parameter values that minimize the distance between simulated and

observed moments.

Pre-2012:(σ2
F E ,PGDP − σ̂2

F E ,PGDP )2 + (σ2
F R,PGDP − σ̂2

F R,PGDP )2 (20)

Post-2012:(σ2
F E ,PGDP−σ̂2

F E ,PGDP )2+(σ2
F R,PGDP−σ̂2

F R,PGDP )2+(σ2
F E ,PC E5Y R−σ̂2

F E ,PC E5Y R )2 (21)

Note that the last term (σ2
F E ,PC E5Y R − σ̂2

F E ,PC E5Y R )2 in (21) is incorporated only for the

period 2012Q1 to 2021Q4. The parameter space for θ is constrained by θ ≥ 0. In the

second stage, I compute the empirical covariance of the three moments evaluated at the

first-stage parameters (θF S ,σF S
ν,τε,σF S

ν,τ) , invert it to derive the optimal weighting matrix W ,

and then estimate the second stage parameters (θ∗,σ∗
ν,τε,σ∗

ν,τ) that minimize the following

quadratic form

( ãσ2
F E ,PGDP , ãσ2

F R,PGDP , ãσ2
F E ,PC E5Y R

)>
W

( ãσ2
F E ,PGDP , ãσ2

F R,PGDP , ãσ2
F E ,PC E5Y R

)
(22)

30



θ
σν,τεp
(1−γ)σ

σν,τεp
γσ

σν,τε
σ

σν,τ
σ

(1990Q2-2011Q4)
Mixed signal only 0.956 5.961 3.894 3.260 -

[0.85, 1] [4.628, 7.105] [3.023, 4.640] [2.53, 3.885]
Mixed signal&target 0.928 5.66 3.696 3.102 3.762

[0.65, 1] [3.736, 7.105] [2.440, 4.640] [2.01, 3.554] [0.456, 9.176]

(1990Q2-2021Q4)
Mixed signal&target 0.736 7.074 4.614 3.866 2.357

[0.4, 1] [4.914, 11.530] [3.246, 5.03] [3.05, 4.038] [1.435, 3.443]

Note: The numbers in square brackets indicate a 90% confidence interval. θ is assumed to lie

within the interval [0, 1].

Table 3: SMM Estimates of θ, σν,τε and σν,τ

where

ãσ2
F E ,PGDP =σ2

F E ,PGDP − σ̂2
F E ,PGDP (θ,σν,τε,σν,τ)ãσ2

F R,PGDP =σ2
F R,PGDP − σ̂2

F R,PGDP (θ,σν,τε,σν,τ)ãσ2
F E ,PC E5Y R =σ2

F E ,PC E5Y R − σ̂2
F E ,PC E5Y R (θ,σν,τεσν,τ)

It is important to note that ãσ2
F E ,PC E5Y R = σ2

F E ,PC E5Y R − σ̂2
F E ,PC E5Y R (θ,σν,τεσν,τ) is in-

corporated only for periods since 2012. For the time period between 1990Q2 and 2011Q4,

only ãσ2
F E ,PGDP and ãσ2

F R,PGDP are taken into account. Finally, to construct confidence in-

tervals for the parameter estimates, I perform 200 bootstrap replications.

6.3 Estimation of Parameters

By comparing Smooth DE based solely on the mixed signal with Smooth DE that incor-

porates both the mixed signal and an additional trend signal – representing the Federal

Reserve’s statement – it becomes evident that the inclusion of the long-term signal plays

a crucial role in reducing the severity of the overreaction in forecasts. Table 3 shows that

the value of θ declines from 0.956 during 1990Q2–2011Q4 to 0.736 over 1990Q2–2021Q4,

which incorporates both mixed and trend signals. This clearly indicates a weakening in

the severity of departure from rational expectations post-2012. To ensure that the de-

cline in θ is not merely a result of introducing an additional parameter for estimation, I

31



2012Q1

1.0

1.1

1.2

1.3

1.4

20
13

Q3

20
16

Q3

20
19

Q3

Norm of uncertainty reduction

(a) The Frobenius Norm of Uncertainty Reduction

2012Q1

0.2

0.4

0.6

0.8

20
13

Q3

20
16

Q3

20
19

Q3

Norm of subjective uncertainty

(b) The Frobenius Norm of Subjective Uncertainty

Note: The figure shows the norm of the matrices Rt+4|t ,t−1 (3a) and Vθt (3b), transformed for com-

parison of their sizes over time. The shaded areas represent the 90% confidence interval. The red

line indicates the mean, computed across 200 bootstraps, for each time period.

Figure 3: The Size of Reduction in Uncertainty and Subjective Uncertainty

re-estimate the parameters using data from 1990Q2 to 2011Q4, incorporating not only the

variances of FE and FR from four-quarter-ahead inflation forecasts as target moments,

but also the variance of FE from long-run forecasts (PCE5YR)11. This approach allows me

to assess whether adding the variance of long-run forecast errors as a new target moment

significantly alters θ and σν,τε over the period 1990Q2 to 2011Q4. If there is no substantial

change compared to estimates that exclude long-run forecast errors, this would suggest

that the observed changes in θ and σν,τε from 1990Q2 to 2021Q4 are primarily driven by

the policy change, rather than by the inclusion of the additional target moment. Notably,

values for θ and σν,τε remain largely unchanged, implying that the announcement of the

long-term target has a real effect, and that the smaller value of θ is not caused by the in-

clusion of an additional parameter.

Furthermore, I examine changes in the effective distortion parameter θ̃t ,t−1, the re-

duction in uncertainty ratio Rt+4|t ,t−1and subjective uncertainty before and after 2012Q1.

Turning to the uncertainty ratio, represented as a 2-by-2 matrix, I use the Frobenius norm

to compare its magnitude. In the left graph of Figure 3, a decline in the norm of Rt+4|t ,t−1

is observed starting in 2012Q1, suggesting that the long-term inflation goal had an im-

mediate effect in reducing uncertainty. This implies that the posterior variance from in-

11The PCE5YR forecast survey only began in 2007. Therefore, I include the total variance of PCE5YR fore-
cast errors over the period 2007Q1–2011Q4.
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2011Q4 2012Q1 2012Q2 2012Q3(
0.599 −0.188
−0.000 0.712

) (
0.513 −0.145
−0.000 0.713

) (
0.545 −0.137
−0.000 0.713

) (
0.559 −0.133
−0.000 0.712

)
Note: For each of the matrices, the element at [1,1] reflects how much τi ,θ

t |t overreacts (or underre-

acts) to news about τt . Similarly, the element at [1,2] indicates how much τi ,θ
t |t overreacts (or under-

reacts) to news about εt . The element at [2,1] measures how much εi ,θ
t |t overreacts (or underreacts)

to news about τt , while the element at [2,2] captures the extent to which εi ,θ
t |t overreacts (under-

reacts) to news about εt . A positive value indicates overreaction, while a negative value indicates

underreaction. Each element of the matrices is the mean computed across 200 bootstraps.

Table 4: Effective Distortion Matrix θ̃t ,t−1 After 2012

formation updates decreases compared to the prior variance before receiving new in-

formation as soon as the announcement is publicized. From 2014Q4 onward, this ratio

converges and stabilizes at a lower level than pre-2012 levels. This reduction is primar-

ily driven by a significant decline in uncertainty about the trend component. Across 200

bootstrap samples, the first element of Rt+4|t ,t−1[1,1], which captures the reduction in con-

ditional posterior uncertainty around trend τt relative to conditional prior uncertainty be-

fore the information update, shows an average reduction of approximately 7.8% between

2011Q4 and 2012Q1. By contrast, the variance ratio reduction for the cyclical component

εt , Rt+4|t ,t−1[2,2], remains consistently around 0.99, indicating that the decline in uncer-

tainty for the cyclical component due to information updates is minimal, regardless of the

presence of the additional signal. As shown in the right graph of Figure 3, subjective uncer-

taintyVθt also declines alongside Rt+4|t ,t−1 from 2012Q1, aligning with empirical evidence

from survey data.

The effective distortion, θ̃t ,t−1, reflects how the reduction in uncertainty affects overre-

action to signals. Since θ̃t ,t−1 is a 2-by-2 matrix, an element-wise comparison is required.

Table 4 presents the effective distortion matrix around 2012Q1. In forecasting τi ,θ
t |t , the de-

gree of overreaction responding to news decreases since 2012, whereas in forecasting εi ,θ
t |t ,

there is little change in the degree of overreaction before and after 2012. A closer examina-

tion reveals that the overreaction in the belief updating process for τi ,θ
t |t naturally divides

into two parts: 1) reaction to new information about the trend component and 2) reaction

to new information about the cyclical component. The overreaction triggered by news

regarding τt , captured by θ̃t ,t−1[1,1], clearly diminishes after 2012, suggesting that the an-

nouncement plays a role in making trend forecasts more rational. Interestingly, when it

comes to news related to the cyclical component, captured by θ̃t ,t−1[1,2], individuals’ fore-
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casts consistently underreact to news both before and after 2012 (θ̃t ,t−1[1,2] < 0). This sug-

gests that, while individuals tend to overreact to news about the trend component when

updating their beliefs, τi ,θ
t |t , they counterbalance this by underreacting to news about the

cyclical component, thereby helping to stabilize their long-term trend forecasts.

Moreover, there is no substantial difference in the severity of overreaction in terms of

expectations regarding the cyclical component εt before and after 2012. The overreaction

pattern of εi ,θ
t |t can also be divided into 1) reaction to new information about the trend com-

ponent, and 2) reaction to new information about the cyclical component. Forecasters

clearly overreact to news about the cyclical component (θ̃t ,t−1[2,2] > 0), and the magnitude

of this overreaction does not change across the pre- and post-2012 periods. Interestingly,

there is neither overreaction nor underreaction of forecasts εi ,θ
t |t to news about the trend

in either period. The element θ̃t ,t−1[2,1] which measures the extent to which forecasts of

the cyclical component εt overreact to news about the trend, remains near zero both be-

fore and after 2012. This implies that when updating forecasts εi ,θ
t |t , individuals rationally

adjust their forecasts even in the context of trend-related information, regardless of their

awareness of government policy goals.

In conclusion, the evidence strongly suggests that the public announcement of the

long-term inflation target reduces the extent of overreacting expectations related to the

trend by lowering conditional variance. This, in turn, leads to greater confidence in fore-

casts, as reflected by a reduction in subjective uncertainty. However, the overreaction of

the cyclical component remains largely unaffected.

6.4 Simulations

Building on the estimation results discussed earlier, I conduct simulations to explore what

would have happened if there had been no policy change in 2012, meaning agents would

have continued to receive only the mixed signal while the actual data remained unchanged.

I assume a panel of 1,000 hypothetical agents predicting four-quarter-ahead inflation un-

der two scenarios. In the first scenario, agents receive both the mixed signal and the trend

signal since 2012. Using the parameters θ = 0.736,
σν,π
σ

= 2.357 , and
σν,τε
σ

= 3.866, the

agents form forecasts over the periods from 1990Q2 to 2021Q4. In the second, counterfac-

tual scenario, the agents rely solely on the mixed signal, without receiving the long-term

inflation target after 2012. For this scenario, the distortion parameter θ = 0.956, and the

mixed signal generated in the first scenario is applied over the period 1990Q2 to 2021Q4.

This implies that, since 2012, the difference between the two lines in Figure 4 is driven
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with only one signal after 2012. A lower RMSE indicates closer alignment with actual forecasts.

Figure 4: Simulated Four-Quarter-Ahead Inflation Forecasts

solely by the trend signal.

The comparison between these two simulation scenarios highlights the impact of re-

ceiving an additional signal on inflation forecasts. Figure 4 presents the root mean squared

error (RMSE) of simulated Smooth DE under both scenarios, illustrating which simulation

aligns more closely with surveyed forecasts. Despite using different θ values in each sce-

nario, prior to 2012, the Smooth DE with one signal and the Smooth DE with two signals

display similar explanatory power. After 2012, however, the Smooth DE with two signals

more closely fits the median SPF data, suggesting that this estimation better captures the

formation of actual expectations. Following the onset of Covid-19, the RMSE under the

two-signal case rapidly increases, illustrating a growing divergence between simulated

Smooth DE and the actual forecasts reported in the survey. In reality, the fundamental

shock to the economy may have diminished trust in the Federal Reserve’s messaging, lead-

ing forecasters to place less weight on direct information from the Federal Reserve about
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Figure 5: The Extent of DE Deviation from RE

trend inflation. Instead, forecasters may have increasingly relied on the single mixed sig-

nal, adjusting their belief-updating behavior as though they were receiving only one sig-

nal. Consequently, since 2019, the counterfactual scenario where forecasters receive only

the mixed signal might more accurately reflect actual forecasts observed in the SPF. Addi-

tionally, in August 2020, the Federal Reserve’s adoption of Flexible Average Inflation Tar-

geting, which shifted monetary policy toward a more lenient stance rather than strictly

targeting 2% inflation, may have made the Federal Reserve’s messages seem somewhat

vague or less direct to recipients.

Figure 5 further illustrates that including two signals significantly reduces the devia-

tion from RE. The deviation from RE is calculated using the following formula 12

deviation = Smooth DE −RE

RE
,

and the results are averaged across the 1,000 panelists and presented in Figure 5. The

12Rational expectations (RE) are calculated under the assumption that θ = 0.
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Figure 6: Belief Dispersion of 1-Year Ahead Simulated Inflation Forecasts

graph reveals that deviations are similar before 2012 across both scenarios, but post-2012,

the scenario with only one signal becomes increasingly volatile. These findings suggest

that sharing a long-term inflation target with the public brings individuals’ expectations

closer to rational expectations, thereby limiting over-reaction.

In addition, the analysis of forecast dispersion, as shown in Figure 6, demonstrates that

sharing a longer run target decreases disagreement among forecasters. The heterogeneity

in expectations is primarily driven by information frictions, specifically by the heteroge-

neous signals that forecasters receive. If the Federal Reserve provides a transparent signal

regarding a long-term trend, individuals’ information sets will contain less uncertainty as

they update them. With this current-period news, individuals recognize that the updated

information is more accurate, prompting them to rely less on past memories and more on

the true density conveyed by the current news. Consequently, representativeness, mea-

sured with respect to reference information, diminishes in its influence on belief updates,

reducing the tendency for overreaction to heterogeneous news across agents. As the ef-

fect of heterogeneous signals on expectations formation decreases, disagreement among

forecasts also declines. This aligns with previous studies showing that well-anchored in-
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Parameters Prior Posterior Mean Std. Error Posterior Distribution (90%)

ρε B 0.554 0.116 [0.345, 0.726]
γ B 0.739 0.110 [0.542, 0.904]
σ2 IG 0.195 0.023 [0.159, 0.235]

Table 5: Estimated Parameters

flation expectations are typically associated with lower dispersion in individual forecasts

(Naggert, Rich and Tracy, 2023; Brito, Carriere-Swallow and Gruss, 2018; Ehrmann, 2018;

Dovern, Fritsche and Slacalek, 2012).

To measure disagreement, I use the IQR of point forecasts following the methods of

Abel et al. (2016), Glas and Hartmann (2016) and Lahiri and Sheng (2010). Figure 6 shows a

noticeable decrease in the dispersion of four-quarter-ahead inflation forecasts after 2012,

which aligns with the observed SPF data. This reduction in dispersion likely stems from a

decrease in disagreement among forecasts about the trend component.

7 Robustness

I explored SMM estimates and analyzed changes and evolving patterns in subjective un-

certainty, reduction in uncertainty, and the effective distortion parameter. These analy-

ses build on fundamental parameters driving inflation dynamics, which were estimated

through Bayesian estimation. However, the SMM estimates and simulations may be sen-

sitive to the specific parameter values obtained from the Bayesian estimation. To assess

robustness, I use alternative parameters derived from different prior distributions. If the

new SMM estimates replicate the observed changes and evolving patterns in all three

dimensions—subjective uncertainty, reduction in uncertainty, and the effective distortion

parameter—it supports the model’s validity.

Since the share of the inflation shock attributed to the cyclical component, γ, must lie

between 0 and 1, and the volatility of the fundamental shock,σ, must be greater than zero,

the priors for these parameters remain unchanged. However, the prior for ρε is adjusted

in this exercise by assuming a beta prior distribution. Table 5 indicates that the posterior

mean of ρε increases significantly from 0.377 to 0.554, while σ2 decreases. Based on these

results, I now assess whether alternative fundamental parameters affect the outcomes of

the SMM estimation.

As shown in Table 6, the value for θ is 0.741, which is not substantially different from
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the previous value of 0.747. However, the size of the noise noticeably decreases in both

mixed and trend signals. In particular, the noise in the trend signal is remarkably small,

suggesting that individuals place a high level of trust in the Federal Reserve’s announce-

ments regarding long-term inflation targets. This reflects the fact that individuals heavily

weigh the Federal Reserve’s statements when updating their beliefs in response to new

information. As a result, the ratio of posterior variance to prior variance, or uncertainty

reduction, falls sharply in the first quarter of 2012 (Figure 7a).

θ
σν,τεp
(1−γ)σ

σν,τεp
γσ

σν,τε
σ

σν,τ
σ

(1990Q2-2021Q4)
Mixed signal&target 0.741 1.643 0.977 0.840 0.338

[0.4, 1] [1.105, 1.696] [0.657, 1.009] [0.565, 0.867] [0.236, 0.522]

Note: The numbers in square brackets indicate a 90% confidence interval. θ is assumed to lie

within the interval [0, 1].

Table 6: SMM Estimates of θ, σν,τε and σν,τ

Typically, the largest reduction in uncertainty occurs when the long-run inflation tar-

get is initially released, followed by a gradual increase in uncertainty as the effect dissi-

pates over time. However, in this analysis, the high degree of trust in the Federal Reserve’s

announcements about the trend component lead to a prolonged effect, with uncertainty

remaining low. Even after the initial sharp decline, the graph shows only a very slight in-

crease, indicating that the reduction in uncertainty has persisted for an extended period.

Consequently, both the subjective uncertainty and the reduction in uncertainty graphs

exhibit only minimal increases after 2012Q1, as shown in Figure 7.

As a result of the Federal Reserve’s new policy, individuals rely less on memory and

place greater emphasis on current news when forming forecasts, thereby mitigating over-

reaction.

As shown in Figure 7 the key findings hold consistently, regardless of the parameter

values estimated through Bayesian methodology. However, the persistence of the policy’s

impact depends on the level of trust in the Federal Reserve. The greater the trust, the

longer individuals maintain confidence in their beliefs.

In addition, Table 7 shows a significant decline in the element θ̃t ,t−1[1,1], dropping from

0.436 to 0.022 in 2012Q1. This drop aligns with the pattern observed in previous analysis,

reinforcing the idea that the announcement helped bring trend forecasts closer to rational

expectations. Similarly, θ̃t ,t−1[1,2] and θ̃t ,t−1[2,1] retain their negative signs, in line with the
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2012Q1

0.0

0.5

1.0

20
13
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Q3

Norm of uncertainty reduction

(a) The Frobenius Norm of Uncertainty Reduction

2012Q1

0.1

0.2

20
13

Q3

20
16

Q3

20
19

Q3

Norm of subjective uncertainty

(b) The Frobenius Norm of Subjective Uncertainty

Note: The figure shows the norm of the matrices Rt+4|t ,t−1(7a) and Vθt (7b), transformed for com-

parison of their sizes over time. The shaded areas represent the 90% confidence interval. The red

line represents the mean, computed across 200 bootstraps, for each time period.

Figure 7: The Size of Reduction in Uncertainty and Subjective Uncertainty

2011Q4 2012Q1 2012Q2 2012Q3(
0.436 −0.302
−0.273 0.465

) (
0.022 −0.016
0.046 0.244

) (
0.061 −0.019
−0.032 0.249

) (
0.063 −0.019
−0.035 0.249

)
Note: For each of the matrices, the element at [1,1] reflects how much τi ,θ

t |t overreacts (or underre-

acts) to news about τt . Similarly, the element at [1,2] indicates how much τi ,θ
t |t overreacts (or under-

reacts) to news about εt . The element at [2,1] measures how much εi ,θ
t |t overreacts (or underreacts)

to news about τt , while the element at [2,2] captures the extent to which εi ,θ
t |t overreacts (under-

reacts) to news about εt . A positive value indicates overreaction, while a negative value indicates

underreaction. Each element of the matrices is the mean computed across 200 bootstraps.

Table 7: Effective Distortion Matrix θ̃t ,t−1 Post-2012
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findings reported in Table 4. In contrast to the earlier analysis, θ̃t ,t−1[2,2] exhibits a notice-

able decrease after 2012.

8 Analysis Using a New Keynesian Model

Extending the partial equilibrium setup, I incorporate the smooth diagnostic expectations

(DE) framework into a New Keynesian (NK) model to examine whether the Federal Re-

serve’s inflation target announcement contributes to stabilizing realized inflation. The

three-equation NK model augmented with diagnostic expectations follows L’Huillier et al.

(2023). My model differs from the original in two key respects: (1) agents form smooth

diagnostic expectations rather than canonical diagnostic expectations, and (2) agents re-

ceive noisy signals about inflation. As described in Section 5, it is assumed that agents

infer τt and εt separately from signals.

ȳt = Et [ȳt+4]− (īt − (Eθt [π̄t+4]+θ(π̄t −Et−1[π̄t+4]))) (23)

π̄t =βEθt [π̄t+4]+κ(ȳt − āt ) (24)

īt =φππ̄t +φx(ȳt − āt ) (25)

where κ≡ εp−1
ψp

(1+ν)13, and the aggregate TFP shock processes are given by

āt = ρa āt−1 +εa,t (26)

where εa,t ∼ i i dN(0,1).

Note that variables with a bar denote log deviations from steady state. Under the

closed-economy assumption, ȳt = c̄t . The expectation operator with superscript θ, Eθ,

smooth diagnostic expectations, while the expectation operator without superscript, E,

denotes rational expectations. Inflation expectations (Eθt [π̄t+4],Et−1[π̄t+4]) are formed de-

scribed in Proposition 3 of Subsection 5.3, and all expectations are subject to noisy in-

formation. Since only inflation expectations have been modeled as shaped by smooth

13ν is inverse Frisch elasticity, ψp is Rotemberg pricing parameter, εp > 1 is the elasticity of substitution
in intermediate good’s demand. Each parameter is not separately identified in estimation. More details are
found in L’Huillier et al. (2023).
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diagnostic expectations so far, output expectations are assumed to follow rational expec-

tations.

The analysis uses annualized quarterly data for inflation, output growth, and the in-

terest rate, the expected variables (Et [ȳt+4],Eθt [π̄t+4],Et−1[π̄t+4]) are replaced with four-

quarters-ahead expectations to align with the Survey of Professional Forecasters (SPF)

four-quarters-ahead median forecasts for real GDP (RGDP) and the GDP deflator (PGDP).

This specification is motivated by two considerations. First, one-quarter-ahead SPF fore-

casts are relatively noisy and less informative about agents’ perceived policy stance. Sec-

ond, since this exercise aims to evaluate how transparent communication of the Federal

Reserve’s long-run inflation target mitigates individuals’ overreactive short-term belief up-

dates, matching the model’s expectation horizon to the SPF’s one-year-ahead forecasts

provides a more relevant empirical counterpart. The realized data are obtained from the

FRED database14. Using the RISE toolbox, I estimate the uncertainty ratio matrix R under

the assumption of a regime shift in 2012 and generate impulse response functions for the

two regimes. Except for the ratio R, all other parameters are assumed to be non-switching.

The estimated variables are reported in Appendix I.

Based on the estimation results, I generate impulse responses of output, inflation, and

the interest rate to a cost-push shock, a monetary policy shock, and a demand shock with

horizon = 20 quarters (Figure 8). Starting with the monetary policy shock, the log de-

viation of inflation, π̄t ,exhibits lower volatility under the regime with the Fed’s inflation

target, while output barely responds. The reduced volatility of π̄t reflects less overreactive

smooth DE, Eθt [π̄t+1], as agents anticipate that inflation will revert toward its normal level.

Because expectations react less strongly to news and trend inflation expectations is more

firmly anchored, realized inflation declines only modestly in response to the shock. Con-

sequently, the nominal interest rate displays a slightly larger deviation, consistent with the

Taylor rule’s response to a relatively stable inflation path.

In response to a demand shock, the difference in the log deviation of yt between the

two regimes is negligible because yt follows rational expectations in this calibration, and

the ex-ante real interest rate term remains similar across the two regimes. The gap in the

real rate between the regime with the Fed’s target and that without the target is less than

0.005, resulting in seemingly identical output responses. In both regimes, however, πt and

it show lower volatility under the Fed’s inflation target.

In the case of a cost-push shock, smooth diagnostic expectations react less to the dis-

14The series names are GDPC1, FEDFUNDS, and GDPDEF, respectively.
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turbance, thereby reducing the forward-looking component of the Phillips curve. The

weaker Phillips amplification of the cost shock yields a smaller and less persistent re-

sponse of inflation, and consequently, a more muted adjustment in the nominal interest

rate through the Taylor rule. Regardless of the shock type, inflation responds with lower

volatility under the Fed’s inflation target, reflecting the stabilizing role of the Fed’s infor-

mation sharing in shaping inflation expectations.

9 Conclusions

The success of monetary policy hinges on clear and accurate communication of its plans

and goals. Given that short-term inflation expectations can influence everyday decisions,

such as consumer spending, it is essential to examine whether monetary policy affects

short-term inflation forecasts. The key takeaway of this paper is that sharing precise nu-

merical targets with the public not only anchors long-term inflation forecasts but also

shapes short-term forecasts in a more rational and less distorted manner. When estimat-

ing future states, individuals rely on the representativeness heuristic, assigning greater

weight to salient memories rather than objectively assessing probabilities. However, when

provided with accurate information, individuals reduce their reliance on subjective re-

call and form expectations based on more objective likelihood of future outcome deliv-

ered, thereby mitigating over-reaction to news. This paper specifically focuses on the 2012

Statement on Longer-Run Goals and Monetary Policy Strategy, which provided concrete

information on trend inflation, significantly reducing inflation forecast uncertainty and

enhancing individuals’ confidence in their forecasts.

Adding such an additional, reliable signal—compared to relying solely on one source—

facilitates more rational belief updating and, consequently, reduces disagreement among

individuals. While the decrease in long-term inflation forecast dispersion stems from the

anchoring effect, the narrowing of short-term inflation forecast dispersion appears to re-

sult from lessened over-reaction to incoming information. This shift leads to expectations

that align more closely with rational expectations, thereby reducing disagreement.

Moreover, I assume a stable economic environment, contributing to the broader un-

derstanding of how policy communication affects expectations in relatively calm peri-

ods. However, in times of severe disruptions—such as the Covid-19 pandemic or the war

between Russia and Ukraine—subjective uncertainty and effective distortion may rise,

particularly if agents doubt the sufficiency of transparent communication during such
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shocks. Future research could examine the role of fundamental shocks in shaping inflation

expectations, specifically assessing how these shocks interact with policy communication

strategies and whether these strategies can mitigate heightened subjective uncertainty in

turbulent times.

Integrating this expectations-formation framework into a standard three-equation New

Keynesian model further shows that announcing the inflation target helps stabilize the re-

sponses of realized inflation to various structural shocks. Within this limited framework

where, for simplicity, only output expectations are assumed to follow rational expecta-

tions, the model demonstrates that the Fed’s target announcement effectively reduces

agents’ overreaction to current news under smooth diagnostic expectations, thereby con-

tributing to the stabilization of realized inflation.

Although this paper includes the Covid-19 period, it treats shocks from these disrup-

tions as drawn from the same distribution as those in normal times. Extending this work

could involve exploring policy guidance’s role during extreme events modeled with a state-

dependent approach, where shocks might come from a different normal distribution with

a higher mean and variance. Such a model would capture how extreme shocks influence

the degree of over-reaction and the shift in conditional uncertainty. This approach could

also shed light on whether the interaction between uncertainty in news and fundamental

shocks results in amplification or dampening effects. Understanding whether transparent

communication by the Federal Reserve can reduce distortion and curb over-reactive belief

adjustments under these conditions would provide valuable insights for policy design in

periods of heightened uncertainty.
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Appendices

A Survey of Professional Forecasters
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Figure 9: U.S. Business Indicators
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B Survey of Professional Forecasters

Please indicate what probabilities you would attach to the various possible percentage

change (annual-average over annual-average) in the chain-weighted GDP price index. The

probabilities of these alternative forecasts should add up to 100.

Note: This question is included in the survey distributed in the second quarter of 2024.

Figure 10: Probabilities of Year-Over-Year Changes in the GDP Price Index
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C Subjective Uncertainty in Fixed-Event Inflation Forecasts
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Note: The figure shows subjective uncertainty measured in fixed-event forecasts from the SPF.

The blue line with circles depicts the median subjective uncertainty, expressed in standard devia-

tions, for current-year inflation. The red dashed line illustrates the median subjective uncertainty,

also expressed in standard deviations, for next-year inflation. A normal distribution is fitted to

individual-level survey data, from which the standard deviations are derived.

Figure 11: Inflation Rate
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D Subjective Uncertainty in Fixed-Event Non-Inflation Fore-

casts
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Note: The figure shows subjective uncertainty measured in fixed-event forecasts from the SPF. The

blue line with circles depicts the median subjective uncertainty, expressed in standard deviations,

for current-year percentage change in real GDP. The red dashed line illustrates the median sub-

jective uncertainty, also expressed in standard deviations, for next-year percentage change in real

GDP. A normal distribution is fitted to individual-level survey data, from which the standard devi-

ations are derived.

Figure 12: Percentage Change in Real GDP
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Note: The figure shows subjective uncertainty measured in fixed-event forecasts from the SPF. The

blue line with circles depicts the median subjective uncertainty, expressed in standard deviations,

for current-year civilian unemployment rates. The red dashed line illustrates the median subjective

uncertainty, also expressed in standard deviations, for next-year civilian unemployment rates. A

normal distribution is fitted to individual-level survey data, from which the standard deviations

are derived.

Figure 13: Unemployment Rate
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E CG Tests of Other Macroeconomic Variables

1990Q2-
2011Q4

2012Q1-
2022Q1

1990Q2-
2022Q1

1990Q2-
2011Q4

2012Q1-
2022Q1

1990Q2-
2022Q1

β0
−0.022
(0.151)

−0.799
(0.375)

−0.351∗∗

(0.172)
- - -

β1
0.225

(0.220)

−0.543∗

(0.295)

−0.299
(0.266)

0.094
(0.194)

−0.557∗

(0.310)

−0.345
(0.279)

Obs. 2320 1182 3554 2312 1177 3543

FE No No No Yes Yes Yes

Note: CG test results using IV regression. Obs. indicates the sample size. Robust standard errors

are in parentheses;∗∗∗indicates significance at the 1% level. ∗∗indicates significance at the 5% level,

and ∗indicates significance at the 10% level.

(a) Percentage Change in Real GDP

1990Q2-
2011Q4

2012Q1-
2022Q1

1990Q2-
2022Q1

1990Q2-
2011Q4

2012Q1-
2022Q1

1990Q2-
2022Q1

β0
0.041

(0.094)

−0.146
(0.297)

0.0231
(0.127)

- - -

β1
0.670∗∗∗

(0.230)

−0.472∗∗

(0.188)

−0.279
(0.293)

0.530∗∗∗

(0.200)

−0.492∗∗∗

(0.190)

−0.307
(0.276)

Obs. 2413 1274 3741 2407 1270 3733

FE No No No Yes Yes Yes

Note: CG test results using IV regression. Obs. indicates the sample size. Robust standard errors

are in parentheses;∗∗∗indicates significance at the 1% level. ∗∗indicates significance at the 5% level,

and ∗indicates significance at the 10% level.

(b) Unemployment Rate

Table 8: CG Test Results at Individual Level
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F Bayesian Estimation

I assume prior distributions as

ρε ∼N(µρ,σ2
ρ)

γ∼B(αγ,βγ)

σ2 ∼ IG(ασ2,βσ2 ),

and set hyper-parameters as follows.

hyper-parameters Value

µρ 0.15

σ2
ρ 0.01

αγ 18

βγ 3

ασ2 15

βσ2 11

For initial values x(0) = (ρ(0)
ε ,γ(0),σ(0)), I guess unconditional mean of prior distribu-

tions.

A normal prior distribution is selected for ρε, anticipating that isolating the cyclical

component after removing the trend in inflation would result in lower persistence of shocks.

While the trend component captures long-term patterns, the cyclical component focuses

on short-term economic fluctuations. This may cause the autocorrelation coefficient in

an AR(1) model to approach zero or even become negative. To account for this potential

variability, a normal prior is considered appropriate for ρε. In contrast, γ, representing a

share ratio constrained to the interval [0, 1], is modeled using a beta distribution, which is

optimal for such bounded parameters. Lastly, given that σ2 is strictly positive, an inverse-

gamma distribution is chosen for its prior. A burn-in period of 10,000 iterations out of

100,000 draws is employed, discarding the initial samples to stabilize the parameters and

enhance the reliability of the posterior distribution.

The following figure plots prior and posterior distributions.
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G Proof of Proposition 3

We start by rewriting equation (18)

f θ(xt+h) ∝


exp

(
−1

2
(xt+h −xi

t+h|t )>Σ−1
t+h|t (xt+h −xi

t+h|t )

)
 exp

(
−1

2 (xt+h −xi
t+h|t )>Σ−1

t+h|t (xt+h −xi
t+h|t )

)
exp

(
−1

2 (xt+h −xi
t+h|t−1)>Σ−1

t+h|t−1(xt+h −xi
t+h|t−1)

)

θ

1

Z



where xt+h =
(
τt+h εt+h

)>
represents the actual realized inflation components, and

xi
t+h|t =

(
τi

t+h|t εi
t+h|t

)>
denotes individual i ′s h-ahead inflation forecast for the trend

and cyclical components.

Since
{

exp(a)
exp(b)

}θ = exp(θ(a −b)),

f θ(xt+h) ∝


exp

(
−1

2
(xt+h −xi

t+h|t )>Σ−1
t+h|t (xt+h −xi

t+h|t )

)
{

exp

(
θ

{(
−1

2
(xt+h −xi

t+h|t )>Σ−1
t+h|t (xt+h −xi

t+h|t )

)
−

(
−1

2
(xt+h −xi

t+h|t−1)>Σ−1
t+h|t−1(xt+h −xi

t+h|t−1)

)})}
1

Z



f θ(xt+h) ∝

exp

(
−(1+θ)

1

2
(xt+h −xi

t+h|t )>Σ−1
t+h|t (xt+h −xi

t+h|t )

+1

2
θ(xt+h −xi

t+h|t−1)>Σ−1
t+h|t−1(xt+h −xi

t+h|t−1)

)
1

Z



f θ(xt+h) ∝

exp

(
−1

2
Σ−1

t+h|t
{

(1+θ)(xt+h −xi
t+h|t )>(xt+h −xi

t+h|t )

−θ(xt+h −xi
t+h|t−1)>Σt+h|tΣ−1

t+h|t−1(xt+h −xi
t+h|t−1)

}) 1

Z


By developing the squared terms and focusing on the terms involving xt+h , we arrive

at
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f θ(xt+h) ∝


exp

(
−1

2
Σ−1

t+h|t
{

(1+θ)I −θΣt+h|tΣ−1
t+h|t−1

}(
x>

t+h xt+h

−2(1+θ)xt+h
(
(1+θ)I −θΣt+h|tΣt+h|t−1

)−1 xi
t+h|t

+2θx>
t+h

(
(1+θ)I −θΣt+h|tΣt+h|t−1

)−1
Σt+h|tΣt+h|t−1xi

t+h|t−1

))


This equation represents the kernel of a normal density with the following mean

E
i ,θ
t (xt+h) =

(
(1+θ)I −θΣt+h|tΣ−1

t+h|t−1

)−1 (
(1+θ)xi

t+h|t −θΣt+h|tΣ−1
t+h|t−1xi

t+h|t−1

)
= (

(1+θ)I −θRt+h|t ,t−1
)−1

(
(1+θ)xi

t+h|t −θRt+h|t ,t−1xi
t+h|t−1

)
= (

(1+θ)I −θRt+h|t ,t−1
)−1 xi

t+h|t +θ
(
(1+θ)I −θRt+h|t ,t−1

)−1 Rt+h|t ,t−1(R−1
t+h|t ,t−1xi

t+h|t −xi
t+h|t−1)

= (
I +θ(I −Rt+h|t ,t−1)

)−1 xi
t+h|t +θ

(
I +θ(I −Rt+h|t ,t−1)

)−1 Rt+h|t ,t−1(R−1
t+h|t ,t−1xi

t+h|t −xi
t+h|t−1)

= (
I +θ(I −Rt+h|t ,t−1)

)−1 xi
t+h|t +θ

(
I +θ(I −Rt+h|t ,t−1)

)−1 Rt+h|t ,t−1R−1
t+h|t ,t−1xi

t+h|t
−θRt+h|t ,t−1

(
I +θ(I −Rt+h|t ,t−1)

)−1 xi
t+h|t−1

= (I +θI )
(
I +θ(I −Rt+h|t ,t−1)

)−1 xi
t+h|t −θRt+h|t ,t−1

(
I +θ(I −Rt+h|t ,t−1)

)−1 xi
t+h|t−1

where Rt+h|t ,t−1 =Σt+h|tΣ−1
t+h|t−1. Since I +θI = I +θ(I −Rt+h|t ,t−1)+θRt+h|t ,t−1, it fol-

lows that

E
i ,θ
t (xt+h) = (

I +θ(I −Rt+h|t ,t−1)+θRt+h|t ,t−1
)(

I +θ(I −Rt+h|t ,t−1)
)−1 xi

t+h|t
−θRt+h|t ,t−1

(
I +θ(I −Rt+h|t ,t−1)

)−1 xi
t+h|t−1

= xi
t+h|t +θRt+h|t ,t−1

(
I +θ(I −Rt+h|t ,t−1)

)−1 xi
t+h|t −θRt+h|t ,t−1

(
I +θ(I −Rt+h|t ,t−1)

)−1 xi
t+h|t−1

= xi
t+h|t +θRt+h|t ,t−1

(
I +θ(I −Rt+h|t ,t−1)

)−1 (xi
t+h|t −xi

t+h|t−1).

Let me define the effective distortion parameter θ̃t ,t−1 = θRt+h|t ,t−1
(
I +θ(I −Rt+h|t ,t−1)

)−1

reflecting the change in uncertainty Rt+h|t ,t−1.

Due to information frictions, we assume that xi
t |t = xi

t |t−1 +Kt (si
t − xi

t |t−1) 15, and given

that Ei ,θ
t (πt+h) =

(
1 1

)
E

i ,θ
t (xt+h) =

(
1 ρh

ε

)
E

i ,θ
t (xt ),

15Kt denotes the Kalman gain matrix.
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E
i ,θ
t (πt+h) =

(
1 1

)[(
I + θ̃t ,t−1

)
xi

t+h|t − θ̃t ,t−1xi
t+h|t−1

]
=

(
1 ρh

ε

)(
I + θ̃t ,t−1

)[
xi

t |t−1 +Kt (si
t −xi

t |t−1)
]
−

(
1 ρh

ε

)
θ̃t ,t−1xi

t |t−1

=
(

1 ρh
ε

)
xi

t |t−1 +
(

1 ρh
ε

)(
I + θ̃t ,t−1

)
Kt (si

t −xi
t |t−1)

• Let us begin by considering the signal for individual i at time t which holds until the

year of 2012.

si
t = Si

t ,τε =
(

1 1
)(

τt

εt

)
+σν,τεν

i
t ,τε

Using this, the expected inflation for individual i is given by

E
i ,θ
t (πt+h) =

(
1 ρh

ε

)[
xi

t |t−1 +
(
I + θ̃t ,t−1

)
Kt (si ,t −xi

t |t−1)
]

=
(

1 ρh
ε

)((
τi ,t |t−1

εi ,t |t−1

)
+ (

I + θ̃t ,t−1
)

Kt

(
τt +εt +σν,τεν

i
t ,τε−τi

t |t−1 −εi
t |t−1

))
.

where Kt is a 2-by-1 Kalman gain matrix.

• For the year 2012 and beyond, the signal si
t is shifted to

si
t =

(
Si

t ,τ

Si
t ,τε

)
=

(
1 0

1 1

)(
τt

εt

)
+

(
σν,τ 0

0 σν,τε

)(
νi

t ,τ

νi
t ,τε

)
.

Thus the expected inflation for individual i ′s updated as follows

E
i ,θ
t (πt+h) =

(
1 ρh

ε

)[
xi

t |t−1 +
(
I + θ̃t ,t−1

)
Kt (si

t −xi
t |t−1)

]
=

(
1 ρh

ε

)((
τi

t |t−1

εi
t |t−1

)
+ (

I + θ̃t ,t−1
)

Kt

((
Si

t ,τ

Si
t ,τε

)
−

(
1 0

1 1

)(
τi

t |t−1

εi
t |t−1

)))

where Kt is a 2-by-2 Kalman gain matrix.
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Finally, the effective distortion matrix θ̃t ,t−1 = θRt+h|t ,t−1
(
I +θ(I −Rt+h|t ,t−1)

)−1 is a 2-by-2

matrix. The first row captures how much the forecast on the trend component τt |t over-

reacts to news about τt and εt . Likewise the second row implies how much expectations

about εt |t are distorted in response to newly received information about τt and εt .

The subjective uncertainty is

Vθt (xt+h) =Σt+h|t
(
(1+θ)I −θΣt+h|tΣ−1

t+h|t−1

)
−1

=Σt+h|t
(
I +θ(I −Rt+h|t ,t−1)

)−1
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H Proof of Proposition 4

∂θ̃t ,t−1

∂Rt+h|t ,t−1
= ∂θRt+h|t ,t−1

(
I +θ(I −Rt+h|t ,t−1)

)−1

∂Rt+h|t ,t−1

= ∂θRt+h|t ,t−1

∂Rt+h|t ,t−1

(
I +θ(I −Rt+h|t ,t−1)

)−1 +θRt+h|t ,t−1
∂
(
I +θ(I −Rt+h|t ,t−1)

)−1

∂Rt+h|t ,t−1

= θI
(
I +θ(I −Rt+h|t ,t−1)

)−1 −θRt+h|t ,t−1
(
I +θ(I −Rt+h|t ,t−1)

)−1 (−θI )
(
I +θ(I −Rt+h|t ,t−1)

)−1

= θ (
I +θ(I −Rt+h|t ,t−1)

)−1 +θRt+h|t ,t−1
(
I +θ(I −Rt+h|t ,t−1)

)−1
θ

(
I +θ(I −Rt+h|t ,t−1)

)−1

For
∂θ̃t ,t−1

∂Rt+h|t ,t−1
> 0, the resulting matrix must be positive definite. Given that the identity

matrix I has any non-zero vector as an eigenvector, we can assume that I and Rt+h|t ,t−1

share the same set of eigenvectors. Consequently, the eigenvalues of the matrix I +θ(I −
Rt+h|t ,t−1) are given by

1+θ(1−λi ) for i = 1,2

The matrix I +θ(I −Rt+h|t ,t−1) is positive definite if and only if

1+θ(1−λ1) > 0 and 1+θ(1−λ2) > 0

given θ > 0.

Since |Σt+h|t | < |Σt+h|t−1|, reflecting the fact that uncertainty decreases as the informa-

tion set is updated,

|Rt+h|t ,t−1| =
|Σt+h|t |
|Σt+h|t−1|

< 1.

Because the eigenvalues of a covariance matrix represent the uncertainty within the

data, the eigenvalues of the updated posterior variance are smaller compared to the eigen-

values of the prior variance. This implies that

λi < 1 for i = 1,2.

As a result the following conditions hold.
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1+θ(1−λi ) > 0 for i = 1,2

ensuring that

∂θ̃t ,t−1

∂Rt+h|t ,t−1
> 0.
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I Estimated Parameters in the New Keynesian Model

Parameters Distribution Description mode

φπ Normal monetary policy rule 1.3843

φx Beta monetary policy rule 0.0028

κ Beta slope of the Phillips curve 0.2122

θ Beta DE parameter 0.6051

ρ Beta persistence of a cyclical inflation 0.0258

γ Beta share of variance due to a cyclical inflation shock 0.8775

ρi s Beta demand shock persistence 0.1830

ρmp Beta MP shock persistence 0.7386

ρpc Beta cost-push shock persistence 0.7331

ρa Beta tech shock persistence 0.8107

σu Inv-Gamma SD of the inflation shock 0.0154

I assume that the monetary policy shock, demand shock, and cost-push shock each

follow an AR(1) process with innovations drawn from a normal distribution N(0,1).The

sample period covers 1996Q2–2021Q4. To estimate relative uncertainty, denoted by Rt |t−1,

I assume that the subjective uncertainty estimated in Figure 1 is positively related to Rt |t−1.

I pin down the size of the signal noises, σt ,τε,σt ,τ,σout put si g nal , using the standard devia-

tion of the median SPF responses over 1996Q2–2021Q4.

64


	Introduction
	Data
	Empirical Evidence
	Statement on Longer-Run Goals and Monetary Policy Strategy
	Subjective Uncertainty of Four-Quarter-Ahead Inflation Forecast
	Over-reaction of Inflation Point Forecasts

	Diagnostic Expectations and Smooth DE 
	Diagnostic Expectations 
	Smooth Diagnostic Expectations

	Model 
	Inflation Dynamics
	State-Space Model
	Smooth Diagnostic Expectations

	Estimation
	Bayesian Estimation
	Simulated Method of Moments
	Estimation of Parameters
	Simulations

	Robustness
	Analysis Using a New Keynesian Model
	Conclusions
	Survey of Professional Forecasters
	Survey of Professional Forecasters
	Subjective Uncertainty in Fixed-Event Inflation Forecasts
	Subjective Uncertainty in Fixed-Event Non-Inflation Forecasts 
	CG Tests of Other Macroeconomic Variables
	Bayesian Estimation
	Proof of Proposition 3
	Proof of Proposition 4
	Estimated Parameters in the New Keynesian Model

