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Abstract

This paper examines the impact of the Federal Reserve’s communication on short-term inflation
forecasts. Following the Federal Reserve’s adoption of an explicit inflation target in 2012, SPF
respondents’ four-quarter-ahead inflation forecasts display two notable behavioral shifts: (1) in-
creased confidence in their beliefs and (2) less overreactive forecasts to news, aligning more closely
with rational expectations. A key factor driving these behavioral shifts is the reduction in uncer-
tainty about trend inflation. To support this claim, I propose a parsimonious inflation expecta-
tions model with smooth diagnostic expectations. The model captures changes in both the first
and second moments of individuals’ predictive densities, providing an explanation for the decrease
in short-term forecast disagreement. In line with this mechanism, incorporating the expectations
formation framework into the New Keynesian model demonstrates that the Fed’s target announce-
ment contributes to the stabilization of realized inflation, mitigating agents’ overreactive belief up-
dating.
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1 Introduction

“Explicit inflation targeting is characterized by the announcement of an offi-
cial target for the inflation rate and by an acknowledgment that low inflation
is a priority for monetary policy.” (Goodfriend, 2004)

“Should the FOMC then take the next step and announce this number to the
public? Some have argued that such an announcement would be unneces-
sary because the Fed'’s implicit inflation objective is already well understood
by the market. I am skeptical.... To reassure those worried about possible loss
of short-run flexibility, my proposal is that the FOMC announce its value for

the OLIR (optimal long-run inflation rate) to the public.”(Bernanke, 2004)

Echoing the collective wisdom of numerous economists, the Federal Reserve first publicly
announced its long-term inflation target of 2% in 2012. Since then, much of the litera-
ture has focused on the anchoring effect of this communication. However, disclosing the
long-term inflation target does more than merely anchor long-horizon expectations; it
also affects short-term inflation forecasts. Specifically, forecasters experience lower sub-
jective uncertainty, as reflected in the shrinking second moment of their predictive densi-
ties, and their point forecasts—representing the first moment of these densities—become
less overreactive to new information.

This paper explains the shifts in both moments through a parsimonious inflation ex-
pectations model. A key driver behind these behavioral changes is the reduction in un-
certainty in forecasters’ information sets, stemming from the transparent communication
of long-term inflation goals. By publicizing the 2% target, the Federal Reserve provides
transparent information about trend inflation, thereby reducing conditional uncertainty
regarding the trend component of inflation given the available information. This, in turn,
influences short-term inflation forecasts, as agents incorporate both trend and cyclical
components in their predictions, bringing their expectations more in line with rational
expectations.

This research sheds light on subjective uncertainty, a critical but often overlooked as-
pect of expectations formation. Subjective uncertainty refers to an individual’s percep-
tion of the level of unpredictability or lack of certainty when making forecasts. It reflects
personal beliefs, perceptions, or incomplete information, rather than objective measure-
ment. While previous research has primarily examined how far point forecasts (i.e., the

first moment) of short-run inflation deviate from long-term goals, less attention has been
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paid to this uncertainty. An well-anchored stable point forecast does not necessarily imply
low uncertainty around the forecast. For instance, a forecaster may predict inflation near
2% while also considering high risks of both deflation and inflation, indicating a lack of
confidence in the forecast. When subjective uncertainty is high, economic agents are less
confident in their beliefs, leading them to place greater weight on extreme possible future
outcomes, even in response to small shocks and noisy signals.

Kumar et al. (2015) highlight the importance of such confidence by proposing five dis-
tinct definitions of anchored expectations to evaluate whether the inflation expectations
of New Zealand firms’ managers were well-anchored. These criteria include: (1) average
beliefs closely aligned with the target, (2) limited dispersion of beliefs across agents, (3)
agents’ confidence in their beliefs, (4) minimal forecast revisions, particularly for variables
with longer forecast horizons, and (5) limited co-movement between long-term and short-
term expectations. The third criterion is particularly relevant to subjective uncertainty,
which serves as a measure of forecasters’ confidence in their point forecasts. Specifically,
it reflects the forecasters’ belief that inflation will stabilize within a specific range in the fu-
ture. If this range is not sufficiently constrained—implying a forecaster lacks confidence in
his own belief—then even small disturbances could lead to deviations from the anchored
point forecast, resulting in de-anchoring. Despite the importance of this factor, it has re-
ceived relatively little attention in the expectations formation literature. I address how
explicit quantitative communication enhances individuals’ confidence and reduces sub-
jective uncertainty, thereby indirectly contributing to another dimension of anchoring.

This research makes three key contributions. First, unlike prior studies focused on
aggregate-level long-term forecasts, this paper examines how the Federal Reserve’s pol-
icy shift affects individual inflation forecasts, especially short-term expectations forma-
tion. While aggregate forecasts have garnered substantial attention, individual forecasts
responding to monetary policy changes remain underexplored. This paper suggests that
transparent communication, which reduces uncertainty in the information set, influences
not only the conditional mean of an individual’s subjective forecast distribution but also
its conditional variance, thereby impacting both moments jointly. Consequently, this study
documents how transparent and accountable policy disclosures by monetary authorities
can alter individuals’ forecasting behaviors.

Second, I propose a parsimonious model to explain three empirical findings observed
in survey data, specifically for four-quarter-ahead inflation forecasts: 1) a reduction in
overreaction to news since 2012, 2) increased confidence in beliefs, and 3) decreased dis-

agreement among forecasters, arising from enhanced rationality. This model, in which
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forecasters share all parameters but differ only in receiving heterogeneous signals, suc-
cessfully replicates forecast patterns observed in actual data, delivering clear and inter-
pretable insights.

Finally, by incorporating the diagnostic expectations framework into a standard New
Keynesian model, this exercise demonstrates how the Fed’s explicit inflation target curbs
overreaction in expectations formation and contributes to stabilizing realized inflation.
The model bridges individual belief distortions with aggregate outcomes, highlighting the
stabilizing role of transparent policy communication.

This study builds on three strands of research to explore how policy communications
influence individual forecasts. Foremost, I develop an expectations formation model,
rooted in diagnostic expectations (Bordalo, Gennaioli and Shleifer (2018); Bordalo et al.,
2019; Bordalo et al., 2020) and smooth diagnostic expectations (Bianchi, [lut and Saijo,
2024), to explain the overreaction of point forecasts to news and the shifts in subjective
uncertainty. Diagnostic expectations (DE), which are based on Kahneman and Tversky
(1972)’s representativeness heuristic, have been instrumental in advancing our under-
standing of individual expectations formation. When new information arrives, as mea-
sured with respect to a reference distribution based on past data, memory selectively re-
calls more vividly past events that are more associated with, or representative of, that cur-
rent news. Extending this framework by incorporating changes in uncertainty surround-
ing current and past beliefs, Bianchi, Ilut and Saijo (2024) emphasize that new informa-
tion not only updates the point estimate but also changes the conditional uncertainty
surrounding the forecasted variable. In the standard DE model by Bordalo, Gennaioli
and Shleifer (2018), the reference distribution is centered on the conditional mean of the
true density at the past point when it was generated. However, its variance matches that
of the true density based on current information. Alternatively, Bianchi, Ilut and Saijo
(2024) condition their model on only reference information, thus the reference distribu-
tion captures the uncertainty from the time when expectations were first formed, rather
than reflecting the current level of uncertainty. They call this approach "smooth diag-
nostic expectations". A key feature of Smooth Diagnostic Expectations (Smooth DE) is
that as current uncertainty declines relative to past uncertainty, expectations distortion
lessens. This aligns with the Federal Reserve’s explicit messaging on long-term inflation
goals, which has reduced both subjective uncertainty and expectations distortion. DE has
been applied to financial markets (Adam and Nagel, 2023; Bordalo et al., 2021; Maxted,
2023) and a small open economy business cycle model (Na and Yoo, 2024). It has also been

extended by L'Huillier, Singh and Yoo (2023), who incorporate the New Keynesian frame-



work and demonstrate that the DE model outperforms the rational expectations model
in a medium-scale DSGE setting. Bianchi, Ilut and Saijo (2023) integrate distant memory
into their model, showing that the interaction between actions and DE repeatedly triggers
boom-bust cycles in response to a single initial shock.

Secondly, this paper closely relates to public communication strategies. Eusepi and
Preston (2010) and D’Acunto et al. (2020) demonstrate that communication is more ef-
fective in shaping expectations when it emphasizes policy goals and targets rather than
the specific tools used to achieve those goals. This approach is particularly impactful
for less sophisticated demographic groups. They conclude that target-based communi-
cation enhances policy effectiveness and helps build public trust in central banks, which
is crucial for the success of their policies. Similarly, Coibion, Gorodnichenko and Kumar
(2018) find that firm managers respond more strongly to information about the central
bank’s inflation target compared to other forms of information. Their experiments re-
veal that firms make the most significant adjustments to their forecasts when provided
with information about the central bank’s inflation target or recent inflation figures, in-
dicating that firms place greater confidence in signals regarding these targets. Coibion,
Gorodnichenko and Weber (2022) further demonstrate that households revise their infla-
tion forecasts more significantly in response to FOMC statements and inflation targets
delivered by the Fed compared to USA Today news articles. Despite similar information
being conveyed, the stronger response to FOMC statements suggests that respondents
may discount some information presented in newspapers. Experimental evidence sup-
ports the notion that households’ and firms’ information sets are significantly influenced
by clear guidance from monetary authorities on policy directions. Given these findings,
it is reasonable to assume that long-term inflation targets serve as strong signals to pro-
fessionals, who tend to pay closer attention to the Federal Reserve’s public speeches and
data releases. Recent studies by Coibion et al. (2024) and Kostyshyna and Petersen (2024)
demonstrate that heightened uncertainty negatively impacts household spending in ex-
perimental settings'. Distinctively, I focus on both the first and second moments of the
predictive density using extensive survey data.

Finally, to measure individual forecaster’s subjective uncertainty, I rely on Ganics, Rossi
and Sekhposyan (2024). Direct measures of expectations, such as point forecasts, are typ-

ically gathered as fixed-horizon projections in the survey data. The Survey of Professional

1Coibion et al. (2024) reveal that high uncertainty about economic growth reduces household spending,
and Kostyshyna and Petersen (2024) show that uncertainty surrounding inflation similarly has a negative
effect on spending.



Forecasters (SPF) also conduct fixed-horizon point forecasts surveys. However, the SPF
collects density forecasts in a “fixed-event” format, making it difficult to comprehensively
observe and understand both the fixed-horizon point forecast and the uncertainty sur-
rounding it. Density forecasts in the SPF are provided for fixed events, with panelists pre-
dicting inflation and output growth for the current and following calendar years, meaning
the forecast horizon changes each quarter. Since I focus on four-quarter-ahead inflation
forecasts, the fixed-event nature of the SPF density forecasts limits their direct applica-
bility. Ganics, Rossi and Sekhposyan (2024) address this issue by proposing a method to
reshape fixed-event uncertainty into fixed-horizon uncertainty. To accomplish this, they
suggest combining current-year and next-year forecast densities through a convex combi-
nation. Using the probability integral transform (PIT) criterion, they estimate the weights
required for this combination, resulting in a correctly calibrated predictive distribution.
While Ganics, Rossi and Sekhposyan (2024) focus on aggregate-level uncertainty, I extend
this methodology to measure individual-level uncertainty. Several researchers have ex-
plored expectations uncertainty. Binder (2017) and Kriiger and Pavlova (2024) introduce
a new measure of uncertainty in probabilistic survey on expectations at the individual
response level. Abel et al. (2016) find no consistent relationship between forecast uncer-
tainty and the dispersion of individual respondents’ point forecasts using ECB-SPF data.
Other studies, such as Grishchenko, Mouabbi and Renne (2019), use dynamic latent factor
models to jointly estimate inflation uncertainty and point forecasts.

The remainder of this paper is structured as follows. Section 2 provides an overview
of the survey data and inflation realizations, the key macroeconomic variable of interest.
Section 3 presents empirical findings on how individual expectation behavior changed
before and after 2012. Sections 4 and 5 lay the theoretical foundations of DE and Smooth
DE, and discuss the structural framework of this research. Section 6 analyzes the esti-
mation results and, through simulation, assesses how well the Smooth DE model which
incorporates the Federal Reserve’s long term inflation target announcement replicates the
observed data. Section 7 demonstrates that the key findings of this paper are robust re-
gardless of the estimated fundamental parameters. Section 8 presents the New Keynesian

model with Smooth DE and analyzes the responses of key variables to structural shocks.



2 Data

This study investigates professional forecasts using the Survey of Professional Forecasters
(SPF), which is conducted in the middle month of each quarter. For instance, in the first
quarter, questionnaires are distributed to panelists by the end of January, and responses
are collected between the second and third weeks of February. The Philadelphia Fed took
over the administration of the survey from the ASA/NBER in the second quarter of 1990,
making the 1990Q2 survey the first one administered by the Philadelphia Fed.

To ensure data consistency and reliability, I exclude the period prior to 1990Q2 due
to evidence suggesting that the same identification numbers may have been assigned to
different forecasters. For example, some individuals participated, then abruptly dropped
out for several periods, and later re-entered, suggesting potential inconsistencies in the
assignment of identifiers. Unfortunately, due to the lack of hard-copy historical records
from the early surveys, the Philadelphia Fed could not investigate these cases further?.
Given my focus on individual forecasters’ expectations, I exclude these problematic peri-
ods from the analysis.

I use point forecasts to measure the conditional mean—the first moment—of the pre-
dictive distribution and density forecasts to capture the conditional variance—the second
moment—of the predictive distribution. For point forecasts, the SPF questionnaire col-
lects projections for both the quarterly and annual levels of the chain-weighted GDP price
index (PGDP). Appendix A presents the exact question asked. Survey participants provide
PGDP projections in levels, and I use their responses from the first column (PGDP1) and
the fifth column (PGDP5) to construct each forecaster’s four-quarter-ahead inflation fore-

cast.

PGDP5!
-1|. (1

Ml pq,=100x (PGTPH

Although the Federal Reserve’s Statement on Longer-Run Goals and Monetary Policy
Strategy specifies a 2% inflation target based on the Personal Consumption Expenditures
(PCE) measure, I do not use the PCE measure for four-quarter-ahead inflation forecasts.
This is primarily because the PCE inflation survey only began in 2007, which would sig-
nificantly reduce the available data. Additionally, the SPF survey does not ask for distribu-

tional forecasts, limiting its usefulness in measuring forecast uncertainty.

2See “4. Forecasts of Individual Participants” in Survey of Professional Forecasters Documentation from
the Philadelphia Fed.
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The SPF compiles respondents’ probabilistic assessments of changes in the GDP price
index, asking them to provide a probability distribution for forecasted outcomes. Ap-
pendix B shows the exact question posed, and Section 3.2 details the construction of a
density forecast for inflation over a four-quarter horizon.

Not only short-term inflation forecasts but also long-term inflation forecasts are es-
sential to this analysis. The dispersion of individual forecast errors for long-term inflation
provides key insights into the magnitude of heterogeneous signal noise regarding trend
inflation. If economic agents form forecasts in a similar manner, yet their forecast errors
vary, this dispersion may reflect differences in the signal noise they receive. The variance
in long-run forecast errors is thus a valuable measure for estimating the magnitude of
this noise in the Federal Reserve’s communication. The analysis uses the 5-Year PCE Infla-
tion Rate (PCE5YR) forecast responses from the SPE which align with the Federal Reserve’s
PCE-based target.

In Section 3.3, I test the predictability of forecast errors to assess the extent to which
the first moment—the conditional mean—of the subjective belief density is updated ra-
tionally. This analysis requires individual-level data on both forecast errors and forecast
revisions. Forecast errors are defined as the difference between realized and forecasted
inflation for the same period, where realized inflation is calculated using the GDP price
index. To ensure alignment with forecasters’ information sets, first-vintage data from
the Philadelphia Fed’s Real-Time Dataset for Macroeconomists is used for realized in-
flation. For instance, the inflation rate from 2000Q4 to 2001Q4 is calculated by dividing
PGDP»gp104 value, published in the first (advance) release at 2002Q1, by the PGD P304
value from the same release. As the SPF survey is conducted between the last week of
the first month and the second week of the second month each quarter, forecasters likely
incorporate this first release into their updated information set and adjust their forecasts

accordingly 3.

3 Empirical Evidence

3.1 Statement on Longer-Run Goals and Monetary Policy Strategy

On January 24, 2012, the Federal Reserve released, for the first time, the “Statement of

Longer-Run Goals and Monetary Policy Strategy”. This statement, updated annually each

3The Bureau of Economic Analysis typically releases advance estimates of the current quarter in the last
week of the first month of the next quarter.



January, conveys three primary pieces of information. First, it declares that a long-term
inflation rate of 2% based on the Personal Consumption Expenditures (PCE) measure is
most consistent with the Federal Reserve’s statutory mandate. As mentioned in the state-
ment, the Federal Reserve anticipates that this will not only reduce economic and finan-
cial uncertainty and enhance the effectiveness of monetary policy but also ensure that
the public’s longer-term inflation expectations become firmly anchored. The objective
announced at the beginning of the year is consistently reaffirmed in subsequent Federal
Open Market Committee (FOMC) statements.

The second piece of information pertains to the Federal Reserve’s efforts to achieve
the maximum level of employment. Unlike the clearly defined quantitative long-term in-
flation target, the Federal Reserve does not specify an employment rate target. This is
because the maximum level of employment is determined not solely by monetary policy
but also by nonmonetary factors that influence the structure and dynamics of the labor
market. Accordingly, rather than announcing a specific numerical target, the Federal Re-
serve confirms that policy decisions would be based on assessments of the maximum level
of employment, considering various indicators. Additionally, the statement provides the
most recent projection of the longer-run normal rates of unemployment?,

Lastly, the statement underscores the Committee’s aim to mitigate deviations of infla-
tion from its longer-term objective, while also addressing deviations of employment from
its evaluations of the maximum sustainable level. These objectives are typically comple-
mentary; nevertheless, in cases where they may conflict, the Federal Reserve commits to
a balanced approach in pursuing both goals. This "balanced approach" remains open to
interpretation, as the statement does not define specific metrics or weights for each objec-
tive. Instead, it suggests that deviations in employment from the Committee’s evaluations
will be treated with equal consideration as inflation deviations from the long-term tar-
get, allowing for flexibility in response to prevailing economic conditions. Over time, this
statement has undergone modifications. For instance, in 2016, the Committee introduced

additional language as follow:

The Committee would be concerned if inflation were running persistently above
or below this objective. Communicating this symmetric inflation goal clearly

to the public helps keep longer-term inflation expectations firmly anchored,

“Information about Committee participants’ estimates of the longer-run normal rates of output growth
and unemployment is published four times per year in the FOMC’s Summary of Economic Projections. The
most recent projections, such as the median estimate of FOMC participants for the longer-run normal rate
of unemployment at 4.6 percent, were omitted from the amended statement released in August 2020.



thereby fostering price stability and moderate long-term interest rates and en-
hancing the Committee’s ability to promote maximum employment in the face

of significant economic disturbances.

The 2016 statement introduced a symmetric inflation goal, suggesting that the Federal
Reserve was equally concerned about inflation falling below or exceeding the target. A
further notable amendment occurred in 2020, when, in an uncommon move, the state-
ment was revised in August, mid-year. Among the many changes, the following language

is particularly noteworthy:

In order to anchor longer-term inflation expectations at this level, the Com-
mittee seeks to achieve inflation that averages 2 percent over time, and there-
fore judges that, following periods when inflation has been running persis-
tently below 2 percent, appropriate monetary policy will likely aim to achieve

inflation moderately above 2 percent for some time.

At this point, the Flexible Average Inflation Target (FAIT) was introduced. The Federal Re-
serve shifted its focus away from symmetric concerns about inflation moving either above
or below the target and instead reflected a willingness to allow inflation to overshoot 2%,
aiming to offset the persistent low inflation below 2% in the long run. This approach in-
dicates the Federal Reserve’s commitment to achieving an average of 2% inflation over
time. In addition, the statement also emphasized that achieving the goals of price stability
and maximum employment in a sustainable manner requires financial stability. It noted
that policy decisions would also reflect a balance of risks, including risks to the financial
system.

Despite these changes in tone, every statement issued from 2012 through the latest
version in 2024 has consistently reaffirmed the 2% long-term inflation target. This reflects
the Federal Reserve’s clear and consistent signaling to the public, reinforcing the credibil-
ity of its commitment to price stability and anchoring inflation expectations. Moreover,
while the core message remains unchanged, subtle modifications within these statements
have provided the public with indirect yet smooth updates on current trend inflation. This
nuanced communication allows the Federal Reserve to maintain flexibility in responding
to evolving economic conditions without undermining the stability of long-term inflation

expectations.
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3.2 Subjective Uncertainty of Four-Quarter-Ahead Inflation Forecast

Since the announcement of the statement, numerous studies have examined whether the
Federal Reserve’s goal of firmly anchoring the public’s longer-term inflation expectations
has been achieved (Binder, Janson and Verbrugge, 2023, Bundick and Smith, 2023, Or-
phanides, 2019, Buono and Formai, 2018). This section aims to empirically demonstrate
that the statement has also influenced density forecasts, drawing on the theoretical foun-
dations proposed by Ganics, Rossi and Sekhposyan (2024).

In each survey, participants provide annual inflation density forecasts for both the cur-
rent and the following years, as illustrated in Appendix B. The first step is to construct the
cumulative distribution function (CDF) for a fixed-horizon density forecast, four quar-
ters ahead (h = 4)°. This CDE denoted as F i}f'&t), represents individual i’s forecast for
h-quarters-ahead of the quarter preceding time ¢. It is formulated as a convex combina-
tion of two separate CDFs: Fg : q(-), which represents individual i’s density forecast for the
current year, and F il, ‘ q(-), corresponding to the density forecast for the next year. Before
forming this convex combination I fit a normal distribution to the each of the individual

CDFs F®  (-) and F!

itq i q(-). I borrow notations from Ganics, Rossi and Sekhposyan (2024).

h,C __h 0 h 1 h
Fl.'t,q(n) = wi'qu,t,q(n) +(1 —wi'q)Fiyt'q(n), such that 0 < W < 1,g€{1,2,3,4}. (2)

where wf{ q denotes individual forecaster i’s unknown weight in quarter g on the cur-
rent calendar year forecast. Estimating {w?) q}‘ézlfollows the methodology outlined by Gan-
ics (2018), which is based on the principle that a density forecast is probabilistically well-
calibrated if and only if its corresponding probability integral transform (PIT) follows a
uniform distribution. Therefore the weights are calculated by minimizing the distance be-
tween the PIT of the combined distribution and the uniform distribution. Notably, the PIT

is evaluated at h-quarters ahead realized inflation.

h _hC _h y_ h 0 h h 1 h
PITi't'q = Fi,t,q(”t,q) = wi,qu,t,q(”t,q) +(1 _wi,q)Fi,t,q(”t,q) (3)

To calculate vertical difference between the empirical distribution function of the PIT
and the CDF of the uniform distribution at quantile r € [0, 1], I define :

Wi (ol ) = 1T s L |PIT),  <7| - @

5This examination looks at annual inflation rate from quarter ¢ — 1 to quarter ¢ +3
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where J is the index set of an appropriate sample of size |77| and 1[:] denotes the in-

dicator function. Thus, |9 | corresponds to the total number of years in which forecaster i
h

i,q
is estimated separately for q = 1,2, 3,4, the amount of available data decreases, leading to

participates. However, this approach faces a challenge due to the small sample size. If w

considerable estimation uncertainty. This issue is particularly exacerbated in this study, as
it focuses on measuring weights at the individual level. To address the small sample chal-
lenge, Ganics, Rossi and Sekhposyan (2024) propose an alternative method. Instead of
estimating weights separately, they suggest parameterizing the weights using flexible ex-
ponential Almon lag polynomials, as outlined by Andreou, Ghysels and Kourtellos (2010).
The weights are specified as follows.

ho_

Wiq= exp(ei,1q+0i,2q2)» qgefl,2,3,4}. 5)

In addition to this, I adopt a rolling window estimation scheme by taking 9 = s— R +
1,s—R+2,---,swhere s = R,R+1,---, T is the last observation of a rolling window of size R,
and T is the last available density forecast observation in i’s responses. In this analysis, the
rolling window size is set to 20. The parameterization in the equation (5) ensures positive
weights while pooling PIT across different quarters using an exponential polynomial.

h o h o h ok

i1 a)l.yz,wm,wiA) and using this formu-

lation, I estimate weights through the minimization of the scaled quadratic distance,

The weights are collected in the vector a)lh = (w

(I)?q = exp(é,-,lq+é,',gq2), q€{1,2,3,4} (6)
A A p2 O_(r,a)’? )
0i1,0i2)" = argminfudr )
0;1,0i2€60Jp r(l - r)

where the parameter space O is chosen to ensure that the estimated weights satisfy
0< d)?’q < 1 for g € {1,2,3,4}, and they are non-increasing in g 6 Tuse p =10,1] that is a
finite union of neither empty nor singleton, closed intervals on the unit interval, in which
domain I want to minimize the distance between the empirical CDF of the PIT and the
uniform CDE
0]

: : : NN TN AN
Using the estimated weights &' = (@7, D7, 5,

mixture distribution and its CDF F ihf p (m) are obtained. The standard deviation of the

c?)f.’A), derived from 9,-,1 and 9,-,2, the

fixed-horizon density forecast reflects subjective uncertainty. In Figure 1, the blue line

5The rationale behind this restriction is that, intuitively, as moving from quarter g to g + 1, I aim to avoid
assigning greater weight to the current year’s forecast in g + 1 than was assigned in quarter g
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inflation are derived at the individual level. The red line plots the median IQR for each
period. The blue line with circles represents the median value of standard deviations for
each period.

Figure 1: Subjective Uncertainty in Fixed-Horizon Forecast Densities

with circles shows the median of the individual standard deviations for each time period.
These standard deviations are computed for each individual’s density forecast, and the
median is plotted. Notably, the standard deviation begins to decrease after 2012Q1 and
remains low until economic volatility rises again with the onset of Covid-19.

To provide a more robust measure of subjective uncertainty, I also use the interquartile
range (IQR) of each forecaster’s density forecast. Unlike standard deviation, the IQR pro-
vides the central 50% of the distribution and is less affected by outliers, making it partic-
ularly useful for skewed or multimodal distributions. By looking into the IQR, I minimize
the influence of irregularities, especially when two fixed-event distribution means differ
significantly or outliers are present. The median IQR values offer a more robust measure
of subjective uncertainty and are plotted as the solid red line.

Figure 1 illustrates that both the IQR and standard deviations confirm a sharp decline

13

1.2

1.1

IQR



in inflation forecast uncertainty since 2012, suggesting that individual forecasters have
become increasingly confident in their projections. It is important to note that this pat-
tern does not result merely from data adjustments or transformations during the estima-
tion process. To ensure a robust comparison, I calculate standard deviations from nor-
mal distribution-fitted fixed event densities for each survey vintage, avoiding the use of
weighted averages. The median standard deviation is then derived for each quarter. The
results reveal a significant reduction in subjective inflation forecast uncertainty across all
horizons—from one to four quarters—since 2012, as further detailed in the Appendix C.
This trend corroborates the findings in Figure 1.

This declining pattern cannot be simply attributed to stable economic environments.
While some may argue that it results from the stabilized conditions following the Great
Recession of 2007-2009, this is not necessarily the case. If economic stability were the
sole driver, we would expect a similar reduction in forecast uncertainty across other key
macroeconomic variables. To test this, I assess forecasters’ subjective uncertainty in real
GDP and civilian unemployment rate predictions around 2012. However, the probabilis-
tic forecast survey for the civilian unemployment rate only began in the second quarter of
2009, limiting the available early data. As a result, the Ganics, Rossi and Sekhposyan (2024)
methodology restricts the ability to observe changes in uncertainty before and after 2012
7. To address this limitation, I fit a normal distribution to fixed-event density forecasts for
real GDP growth and the unemployment rate, deriving standard deviations and plotting
the quarterly median. Appendix D shows that there are no significant differences in prob-
abilistic forecasts for these variables around 2012. This supports the conclusion that the
Statement on Longer-Run Goals and Monetary Policy Strategy, which clarifies long-term
inflation targets, has a direct impact on inflation forecasts without affecting uncertainty

for other macroeconomic variables.

3.3 Over-reaction of Inflation Point Forecasts

As the second moment of the predictive density decreases, it naturally raises the question
of whether the first moment, or conditional mean (point forecast), is also affected, poten-
tially causing shifts in forecast trends or directions before and after 2012. At the individual

level, the average forecaster appears to overreact to private information, a phenomenon

“In the analysis, 20 quarters of survey data are used in a rolling window to estimate weights for density
forecasts. For the civilian unemployment rate, responses up to 2014Q2 are used to produce the first fixed-
horizon forecast for 2016Q1
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Bordalo et al. (2020) empirically verify and explain through the DE model. Coibion and
Gorodnichenko (2015) introduce the CG test to provide evidence of information rigidities,
with the CG test coefficient reflecting the degree of rigidity, consistent with both sticky-
information and noisy-information models. They demonstrate that, at the aggregate level,
systematic predictability of forecast revisions on forecast errors results in a positive CG test
coefficient when information rigidities are present.

In contrast, Bordalo et al. (2020) apply the CG test at the individual level and find a
negative CG coefficient, indicating individuals’ over-reactive expectations in response to
news. In my analysis, following Bordalo et al. (2020), I apply the CG test at the individual
level by dividing the data into pre-2012 and post-2012 periods, where a distinct declining
trend of subjective uncertainty is evident in Figure 1.

The version of the CG test by Bordalo et al. (2020) is

i _ i i i
Tr+a =T pige = Bo + ﬁl(”t+4lt - ”t+4|t—1) T€ 114 (8)

i i
t+4lt P r+ale-1
represents individual i’s forecast errors. If §; > 0, it suggests that

where forecast revisions, b8 quantifies new information received by indi-

vidual i and 7,44 — n’;+4|t
the average forecaster underreacts to her own information, whereas 3, < 0 indicates over-
reaction. A negative f, indicates that the average forecaster is excessively optimistic when
forecast revisions are positive - that is, when the current news points to a more favorable
future state compared to the previous information set. Importantly, under rational expec-
tations, 81 = 0, even in the presence of information frictions. In the individual-level CG
test, 1 does not directly indicate the presence or absence of information frictions. A ra-
tional forecaster may encounter information frictions stemming from inattention or noisy
signals, but as long as the forecaster updates her beliefs rationally, forecast errors will re-
main unpredictable. If the forecaster has updated expectations rationally based on the
available information, forecast revisions would not systematically predict forecast errors.
Therefore, if there is no correlation between forecast revisions and forecast errors, it sug-
gests that an average forecaster updates her expectations rationally, even with information
frictions.

Table 1 exhibits that the pattern of overreaction in individual forecasts has weaken
since 2012. Specifically, while 8, turns positive after 2012, it remains statistically insignif-
icant, suggesting that forecasters now form expectations closer to rational expectations
for four-quarter-ahead inflation, with less sensitivity to new information. The Federal Re-

serve’s additional communication on longer-run inflation has helped moderate overreac-
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1990Q2- 2012Q1- 1990Q2- 1990Q2- 2012Q1- 1990Q2-

2011Q4 2022Q1 2022Q1 2011Q4 202201 202201
F; —0.231%** 0.241 —-0.062
0 (0.079) (0.238) (0.105)
B —-0.316*** 0.087 -0.147 —0.361%** 0.066 —-0.194**
1 (0.070) (0.175) (0.103) (0.069) (0.128) (0.090)
Obs. 2229 1142 3449 2221 1137 3438
FE No No No Yes Yes Yes

Note: CG test results using IV regression. Obs. indicates the sample size. Robust standard errors

* %k %k &

are in parentheses;***indicates significance at the 1% level. **indicates significance at the 5% level,
and *indicates significance at the 10% level.

Table 1: CG Test Results at Individual Level

tion in short-horizon inflation forecasts. As a result, forecasters incorporate this new mes-
sage, leading to a decrease in subjective uncertainty, which in turn boosts their confidence
in their beliefs without exaggerating extreme forecast scenarios. In sum, the Statement of
Longer-Run Goals and Monetary Policy Strategy has jointly influenced both the first and
the second moments of the predictive density, particularly for short-term horizons.

This observation suggests that clearer and more consistent communication from pol-
icymakers has been key to moderating overreaction patterns typically seen in individual
forecasting behavior. Even when compared to the real GDP growth rate and the unem-
ployment rate CG test results provided in the Appendix E, this is a distinctive feature of in-
flation forecasts. The point forecasts for the real GDP growth rate and the unemployment
rate tend to exhibit slightly stronger overreaction to news since 2012. To investigate the
mechanisms driving these changes — observed uniquely in inflation forecasts — I present

the analysis using the Smooth DE framework.

4 Diagnostic Expectations and Smooth DE

The key distinction between Smooth DE and DE lies in changes in conditional uncertainty.
In Smooth DE, the degree of overreaction depends on the current level of uncertainty
about the state relative to the reference uncertainty formed in the past. Before delving
into the specifics of Smooth DE, it is important to first understand the foundation laid by

the DE model, which serves as the basis for these extensions.
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4.1 Diagnostic Expectations

Bordalo, Gennaioli and Shleifer (2018) introduce the DE framework, which explains how
survey forecasts become overly optimistic following good news and overly pessimistic af-
ter bad news. This overreaction, especially prominent in credit markets, challenges the
assumptions of rational expectations theory. As an alternative, the authors propose the
DE model, which draws on Kahneman and Tversky (1972)’s concept of ‘representative-
ness heuristic. The DE framework integrates both overextrapolation and the neglect of
risk.

In the DE model, forecasters reassess the likelihood of future outcomes based on ‘rep-
resentativeness. When forming forecasts about future economic states, individuals oper-
ating under the DE mechanism do not assess the distribution of a future state using the
true conditional distribution given current news or realizations. Although this information
is stored in their memory, when new information arrives, they compare the likelihood of
certain future states given current news (updated information set) to that derived from ref-
erence information which has not incorporated the news. Because of memory limitations,
agents cannot recall information perfectly; instead, they quickly recall certain ‘represen-
tative’ states—specifically, those that seem more likely based on new information. These
states are the ones whose likelihood increases the most when compared to their previous
beliefs or ‘reference memory’, which was shaped by past information. As a result, indi-
viduals overweigh these representative states, distorting the objective likelihood. Bordalo,

Gennaioli and Shleifer (2018) formalize ‘representativeness’ as

h(@¢+11G)

P R -G

where @, is the forecasted variable, G represents updated information, serving as a
posterior group that incorporates the latest news, while —G denotes reference informa-
tion, which serves as a reference group without incorporating the latest news. A certain
expected outcome @4 is more representative if it occurs more frequently given news (G)
relative to the reference memory (—G), and this state @;4+; comes to minds faster than
other possible states. This representativeness distorts the objective density in the minds
of decision-makers, leading them to form a biased subjective density. The distorted sub-

jective density is expressed as
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where Z is a normalizing constant. As 6 increases, the tendency to oversample repre-
sentative states becomes stronger, resulting in greater distortion of the objective density.

Building on this distorted density, the diagnostic belief is formalized as follows.

Proposition 1. When the process for wis AR(1) with normal (0,0?) shocks, the diagnostic

distribution h? (@+1) is also normal, with variance o®and mean

E(wps1) = Er(@p41) + OIE: (@141) — Er_1 (@p11)].

Proof. See Appendix in Bordalo, Gennaioli and Shleifer (2018). O

[E? represents diagnostic expectations, while E;, the expectation operator without the
superscript 8, represents rational expectations. Both E;(w+1) and E;—;(w;+1) represent
the conditional mean of rational expectations from the true density. It is assumed that
the variance of diagnostic distribution o is identical to that of the fundamental shocks.
Under rational expectations, 0 equals zero, and the DE model collapses to rational ex-
pectations. This implies that agents have no memory limitations, allowing them to recall
information perfectly and update their beliefs rationally. On the other hand, when 6 > 0,
diagnostic expectations overreact to the information. A positive  means that agents eval-
uate the likelihood ratio based on representativeness, and 6 measures the severity of this
distortion. Due to the distorted probability density in their incomplete memory, agents’
oversampling of representative states significantly influences their expectations.

Consequently, while individuals may hold rational expectations in the back of their

minds, diagnostic expectations are unconsciously distorted by the representativeness heuris-

tic. This heuristic causes forecasters to overemphasize certain aspects of the information

received, thereby distorting the objective distribution in their forecasts.

4.2 Smooth Diagnostic Expectations

Bordalo et al. (2020) and Bordalo, Gennaioli and Shleifer (2018) assume that subjective un-

certainty is equivalent to objective uncertainty. A key innovation in Bianchi, [lut and Saijo
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(2024)’s Smooth DE framework is the disconnection of objective and subjective uncer-
tainty. They relax the rigid assumption that subjective uncertainty must mirror objective
uncertainty. This shift acknowledges that if the first moment of expectations is distorted,
itis reasonable to expect the second moment to be affected as well. Despite this intuition,
the standard DE models do not focus on the role of uncertainty until Bianchi, Ilut and Saijo
(2024) highlight the importance of changes in conditional uncertainty in shaping expec-
tations.

The change in conditional uncertainty is represented as

2
o
_ t+h|t
Revniti-1= —5—— 9)
o t+h|t—]
where af +njs—y is the variance of the true density conditional on reference information

set (in my model, reference information set is the information set from the immediately

2
t+h|t

information set®. Forecasters retrieve memory selectively, leading to a distorted density

preceding period,/ = 1) and o is the variance conditional on the current updated

O (x;4n.#:) affected by representativeness.

0
1
VA

fXnlHe)

G (10
fEeenl# )

PRl 20 = fGranl#)

f

In my model Jtre is the information set updated in the preceding period, .%;_;.

Proposition 2. (Smooth DE) Consider the reference group given by density in equation
f(chhIJtr_ef) = N+ Lerhii—] 0§+h|t_1). Denote the ratio variances for the current and

reference groups as

_ 2 2
Rt+h|t,t—] = 0t+h|t/0t+h|[—]

IfRiinyr,i—7 < (14+0)/0, the Smooth DE density fg (Xt+nlF) in equation (10) is Normal
with conditional mean

Riinite—g
1+0(1 = Resnyri—g)

[E?(xt+h) = Werne+0 (Mesnie— Mesrnie—g) (11)

and conditional variance is

8] >1 allows distant memory for reference information set.

19



0.2

hlt
VY (xp1) = A : (12)
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Proof. See Appendix in Bianchi, Ilut and Saijo (2024). O

We+ne and pgip -5 Tepresent the conditional mean of rational expectations from the
true density. The term R;, j,|;,,— plays a critical role in both the conditional mean, [E? (X))
and variance, \/?(.XI.}_ ). In Bianchi, Ilut and Saijo (2024), they highlight three key features

of Smooth DE as introducing the effective distortion parameter

Rt+h|t,t—]
1+60( = Rep,r-g) .

ém_]ze (13)

The effective distortion parameter 0, ,_; measures how much the conditional mean,
in effect, overreacts to new information. This time-varying parameter reflects how much
uncertainty is resolved as new information is incorporated. When current information
significantly reduces uncertainty compared to reference information formed in the past,
the role of retrieved memory diminishes. As uncertainty decreases, reliance on represen-
tativeness is reduced, allowing forecasters to depend more on precise information about
the current state. This results in a conditional density, fe(fc,pr nl#:), that is closer to the
true density.

Within the standard DE framework, it is impossible to demonstrate that the distortion
parameter varies over time; it remains constant throughout. In contrast, in the smooth DE
model, the effective distortion parameter, 8, ,_;, evolves over time, influenced by changes
in the level of conditional uncertainty. Furthermore, the standard DE model does not sup-
port the evidence that agents tend to exhibit lower subjective uncertainty as they receive
more transparent signals. In the standard DE model, agents’ subjective uncertainty always
aligns with true uncertainty. The smooth DE model is crucial because it explains joint
changes in the conditional mean and variance of the belief distribution by incorporating

Rl‘+h|t,t—]'

5 Model

In this section, with smooth DE, I propose a parsimonious model of individuals’ expec-
tations formation for four-quarter-ahead inflation. It is assumed that agents update their
beliefs about unobservable components upon receiving signals that convey both informa-

tion about the underlying states and noise.
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5.1 Inflation Dynamics

Inflation is modeled as the sum of two unobserved components: a permanent trend com-
ponent 7; and transitory cyclical component (i.e., the inflation gap) €;, which follows an

AR(1) process with persistence p..

Mey=Tr+E¢ (].4)

This trend-cyclical decomposition builds upon the foundational work of Stock and
Watson (2007) and is further developed by more recent studies, including those by Chan,
Clark and Koop (2018), Mertens (2016), Mertens and Nason (2020), Nason and Smith (2021).
Mertens and Nason (2020) and Nason and Smith (2021) analyze inflation forecasts within
a sticky information framework incorporating average forecasts, demonstrating that grad-
ual adjustments in forecasts during the high-inflation period of the 1970s led to persistent
forecast errors until the Volcker disinflation. Their work also highlights the increased stick-
iness in inflation forecasts following this period.

This paper contributes to the existing literature by applying a noisy information model,
analyzing individual-level panelist forecasts instead of aggregate forecast data, offering a

novel perspective on the individual level expectations formation.

5.2 State-Space Model

Forecasters make multi-period-ahead inflation forecasts by combining their predictions
of the trend component, 7,5, and the cyclical component, €;,5. To generate these fore-

casts separately, agents update their beliefs about the current states Tf"lgt and siﬁ, based

on the information available at time ¢. Forecasters update in a forward-looking way in the

sense that forecasts take the variable’s true persistence into account, even if they overreact

to news”.

— 1hgi

9INote that, since the expectations formation rule is forward-looking, t fe

i .
: tehle given the random
4

walk process, and €

= p?silt, given the AR(1) process.
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where h =4, Ti’li) = [Ei’e (t4) and si‘lf = [Ei’e (e¢) represent individual i’s updated trend and
cyclical components, respectively, both distorted by 0, given the information available at
time ¢ . The expectation operator E’;Q reflects individual i’s Smooth DE. The parameter 0
captures the extent of the departure from rational expectations.

The transition equation, a key part of the state-space model, remains unchanged be-
fore and after 2012, reflecting the (conservative) assumption that the data generating pro-

cess for ; does not change.

T L)
Er 0 pe €r-1 0 VYo Ute

The total variance of the innovations to 7;, conditional on time ¢t — 1 information, is
o?. The share of this variance attributed to shocks to the trend component 7, is 1 -y
while the remaining share vy is attributable to the cyclical component ¢;. u;; and u;, are
independent and follows standard normal distributions, u;; ~N(0,1) and u; ~N(0,1).

At each time ¢, the target variables 7, and ;. are forecasted. To make these fore-
casts, forecasters must update their beliefs about the current states 7; and &;, which are
unobservable. Instead of direct observation, they rely on noisy signals that contain infor-

mation about these states. Forecasters, therefore, infer 7; and €, based on these signals.

From this point forward, we assume the signal structure is exogenous.

5.2.1 Signal Structure Prior to the Statement: 1990Q2-2011Q4

Before 2012, agents receive only one signal that contains information about both 7; and
€¢, but they cannot disentangle which portion corresponds to each component. Agents
receive private signals, leading to heterogeneity in forecasts. Each agent’s signal noise is
drawn from a standard normal distribution v?n ~N(0,1), and size of the noise is repre-

sented by 0y ;¢
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[ will henceforth refer to the signal S}

as the ‘mixed signal’.

5.2.2 Signal Structure After the Statement: 2012Q1-2021Q4

From 2012 onward, agents begin receiving an additional signal from the Statement on
Longer-Run Goals and Monetary Policy Strategy, which clarifies the Federal Reserve’s long-
term inflation target. As its nuances evolve and shift over time, this signal indirectly con-
veys information about the current trend inflation, 7, while also providing the Federal
Reserve’s viewpoint on the current economic situation. The noise associated with this
signal, vi,r, varies across agents, reflecting different levels of trust in the Federal Reserve.
For example, an agent with high confidence in the Fed’s ability to maintain price stability
would have v’;,T close to zero, perceiving the signal with little noise. Conversely, an agent
skeptical of the Federal Reserve’s commitment, perhaps due to concerns about financial
stability or labor market conditions, would perceive a much noisier signal, with Vi‘,r devi-
ating significantly from zero. These differences in trust are reflected in the SPF data. Even
after the Federal Reserve’s long-term target has been shared, disagreement in 5-year PCE
forecasts across agents persists, as evidenced by the IQR of forecasts in Figure 2.

The IQR indicates that while disagreement in long-term inflation forecasts gradually
decreases following the announcement, it does not completely dissipate. This gradually
diminishing (but still existing) disagreement highlights the heterogeneity in agents’ recep-
tion of publicly accessible signals. Even when exposed to the same information, agents
interpret it differently based on their individual trust in the Federal Reserve’s credibility,
leading to heterogeneous signal reception.

The measurement equation since 2012 can be represented as

Si 10 T o 0 vi
St,TE 1 1 Et 0 O-’V,TE Vt,TE

Here, 0, ;¢ and o, ; represent the magnitudes of the noise terms. The noise terms
v‘;,n and v’;,T are both assumed to follow a standard normal distribution, N(0,1), and o ;
captures the magnitude of noise in the trend signal. I will refer to the signal S’;,T as the
‘trend signal’. Note that the signal structure represents each forecaster’s perceived model

of 7, which is not necessarily the same as the true data-generating process.
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Note: The red line represents the interquartile range of 5-year PCE forecasts. To capture a wider range of
forecasts, the blue dashed line shows the difference between the 90th and 10th percentiles of 5-year PCE
forecasts. The gap between forecasts ranked at the 90th and 10th percentiles among survey participants has

significantly narrowed since 2012.

Figure 2: Belief Dispersion of 5-Year-Ahead PCE Forecasts

5.3 Smooth Diagnostic Expectations

Given the state-space model, individuals update their information sets and beliefs. The

true densities conditional on the current information set and the reference information

set obtained in the preceding period are

, Tt
ES A iy _ t+h|t
f@rrn ErenlF) =N ; ! y 2 r+ht

6t+h|t
ref 7i
£ £ Lrefy — t+hlt-1
f(Tt+hr£t+h|jt )=N i ! ’Zt+h|t—1
8t+h|t—1
i _ i i _ i T . ) )
where T = E}(T¢+n) and Erine = E}(e4+1) represent individual i’s Bayesian rational

expectations, unaffected by the heuristic. Instead of applying these true densities, fore-

casters use a distorted density, defined as

; 0
e i e s i | SGeam gD 71
PG rm el TN = f R ranls)) | | — (18)
f(Tt+h)€t+h|jt' )
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where Z is a constant of integration, and 6 is assumed to be greater than zero (8 > 0). If
0 =0, this implies that forecasts are formed without distortion, in a fully rational manner.

A key concept here is representativeness,

. . fGanénld))
rep(Tiin Eren) = " " ey
f@ s &enlZ )

which measures the extent to which a forecaster, when faced with current news, sub-
jectively assigns higher or lower likelihoods to future outcomes (7 ;. ,, €+ 1,) relative to past
reference information. This process triggers selective recall, with possible future out-
comes of higher relative frequency being recalled more strongly. When 6 = 0, the heuristic
does not influence expectations, and forecasts are based purely on the objective condi-
tional probability f(T;+5,Er+n Iﬂti ). Notably, rep (7 1+n, €¢+1) is affected not only by changes
in the conditional mean but also by changes in the conditional variance— by shifts in
Ziene and 2.y p—1, which measure the uncertainty of the current distribution with re-
spect to the reference distribution —when the information set is updated. As beliefs are
updated, the ratio of conditional uncertainties, denoted by R, ;~1, plays a crucial role
in the smooth diagnostic expectations formation process. To account for this adjustment
in conditional uncertainty in relation to the severity of distortion, the effective distortion

parameter 0, ,_; is adopted.

Proposition 3. Let the reference group of variables, T, and €, be given for the period imme-
diately preceding the current one. The ratio of the conditional variance matrices between

the current period, t, and the reference period, t — 1, is defined as a 2-by-2 matrix given by

_ -1
Rt+h|t,t—1 = Zt+h|tzt+h|t—1'

IfRivnir—1 < {%}I , Where I is the 2-by-2 identity matrix, the smooth DE density is

normally distributed with the conditional mean before 2012 expressed as
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and the conditional mean after 2012
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where effective distortion matrix 0;,-1 = ORypys—1 (I +60(I— Rt+h|t,,_1))_1. The vari-

ance is formulated as

VIGTreh) = Zeenie ((1 +0)1- HZthZ;ihu_l) -

-1
= Zt+h|t(I+9(I_Rt+h|t,t—l)) .

Proof. See Appendix G. O

The Kalman gain matrix, K;, changes over time. Since 2012, with the addition of a
new signal, the K; matrix shifts from a 2-by-1 to a 2-by-2 matrix structure. The reduc-
tion in uncertainty, Ry, p|s;—1, takes the form of a 2-by-2 matrix throughout all periods'®.
Risnjri—1 < {%}I guarantees the variance of the resulting distorted normal distribution

is finite and positive.

191n Bianchi, Tlut and Saijo (2024), Ry ps,-1 is defined as ‘the ratio of conditional uncertainty, which can
rise or fall as the information set is updated. In particular, during an uncertainty shock—when updated
information becomes more uncertain— Ry, p|;,;—1may increase. However, in my setting, I assume that as
information is updated and the latest news is incorporated, uncertainty in the information set decreases,
based on the assumption of a stable economy. For simplicity, I refer to R, p;,—1 as the reduction in uncer-
tainty.
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Proposition 4. The effective distortion matrix 0, ;—1 decreases in a reduction in uncertainty

Riipit, -1

aét,t—l

— >0
aRt+h|t,t—1

Proof. See Appendix H. O

In the smooth DE model, 9m_1 is positively associated with the ratio of variances
Riihit,i-1. The distortion parameter 6 captures the degree to which the diagnostic den-
sity inflates the probability of representative states and is constant. However, the effective
degree of this amplification—represented by 6, ;_; —varies over time, as it is scaled by
Riint,i-1. Thus, if ;45 is much smaller than Z;, j,;—;, due to highly precise news in the
current period, the effective magnitude of distortion declines as R;.p ;1 decreases. It
directly relates to how excessively news influences agent’s forecasts. Therefore the first
moment of smooth DE density, [Ei’e (¢+1), is influenced by R ps,+—1 adjusting ém_l. In
practice, the Federal Reserve’s explicit communication about the 2% inflation target in
early 2012 significantly contributed to reducing uncertainty surrounding the trend com-
ponent 7; which is embedded in X, ;. This reduction in uncertainty is particularly siz-
able following the Federal Reserve’s first statement in 2012. This clarity reduces forecast-
ers’ reliance on selectively recalled reference information when estimating the trend com-
ponent.

Moreover, subjective uncertainty, denoted by \/? (s4p), is tied to the ratio of condi-
tional variances, R;. s, -1, implying that reduced uncertainty also diminishes subjective
uncertainty in forecasts. Forecasters experience a reduction in uncertainty of the current
distribution with respect to the reference distribution as incoming news delivers more pre-
cise information. Thus, they overstate how precise their updated belief is. This leads to
lower uncertainty surrounding their point forecasts, higher confidence in their forecasts.
This relationship is evident in the SPF data, where a notable decline in subjective uncer-
tainty is observed following the Federal Reserve’s communication in 2012. Consequently,
forecasters base their estimates on clearer, current information, reducing reliance on the
representativeness heuristic and imperfect memory recall, resulting in smaller distortions

in belief updates.

Corollary 1. As0; ;_; decreases, heterogeneity across individual forecasts decreases because

less weight is given to signals that induce heterogeneity in the information individuals re-
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ceive.

Additionally, a reduction in uncertainty leads to less dispersion across inflation fore-
casts. The effective distortion parameter, 0, ,_;, serves as an amplifying factor for news.
Forecast heterogeneity arises only from the heterogeneous signals that agents receive.
When the amplifying factor decreases, each agent places less weight on news in form-
ing their inflation expectations. Consequently, individual forecasts become more aligned
with rational expectations as they become less sensitive to heterogeneous signals, thereby

reducing disagreement among agents.

6 Estimation

The model is estimated in two stages. In the first stage, I estimate the parameters gov-
erning the law of motion in inflation using GDP Price Index data from 1990Q2 to 2021Q4.
With these estimates, I proceed to estimate the distortion parameter and the magnitude
of signal noises using the simulated method of moments (SMM). This two-step approach
addresses the difficulty of estimating all parameters simultaneously through SMM, espe-
cially given the presence of latent variables, which complicates the selection of appropri-
ate target moments. To overcome this, I first apply Bayesian estimation to pin down the
parameters related to the law of motion, and subsequently use SMM to estimate the dis-

tortion parameter and signal noise.

6.1 Bayesian Estimation

Assuming that agents share true values for p.,y and o in the equation (15), [ use Bayesian
estimation along with a state space model to estimate the parameters p,,y, and 0. In the
state space model, a transition equation is same as equation (15) and the measurement

equation is

Tt
=1 1)( ) (19)
€t
where y; represents realized inflation from Philadelphia Fed’s Real-Time Dataset for
Macroeconomists.
The parameter estimates are reported in Table 2. I report mean posterior estimates,

along with the 90% posterior interval. I generate 100,000 draws using the Metropolis—
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Parameters Prior Posterior Mean Std. Error Posterior Distribution (90%)

Pe N 0.377 0.105 [0.204, 0.551]
Y B 0.701 0.108 [0.509, 0.867]
o? IG 0.237 0.028 [0.195, 0.286]

Table 2: Estimated Parameters

Hastings algorithm and discard the first 10% as initial burn-in. Further methodological

details are presented in the Appendix F.

6.2 Simulated Method of Moments

The advantage of using SMM lies in its flexibility. SMM is highly flexible and can be ap-
plied to a wide variety of models, including non-linear and dynamic models where tra-
ditional estimation methods (e.g., maximum likelihood) may be difficult or impossible to
use. Rather than relying on predefined distributions, SMM leverages simulated data from
the model itself, allowing for greater flexibility in application. Furthermore, while the pro-
posed expectations formation model benefits from simplicity and transparency; it is ac-
companied by the possibility of misspecification. In such cases, moment-based methods
like SMM are generally more reliable than other estimation techniques.

Building on this foundation, I apply SMM to estimate key parameters by aligning the
variances of forecast errors and forecast revisions—moments that are both observable in
the data and tied closely to the parameters being estimated. According to the law of total
variance, the variance of forecast errors can be broken down into two components: (i) the
average variance of errors across agents and (ii) the variance over time of consensus errors.
The former provides information about size of noise in signals (o,7¢,0v,7) while the latter
captures the overreaction parameter 6. This reasoning similarly applies to the variance of
forecast revisions.

The objective is to estimate parameter values that best align with the variances of fore-
cast errors (FE) and forecast revisions (FR), aggregated across time and agents. I propose
arange of possible values for 0,0, ;- and o, ;. The target moments are the variances of FE
and FR for PGDP forecasts and the variance of FE for 5-Year PCE Inflation Rate (PCE5YR)
forecasts. To identify the optimal parameters, I construct a three-dimensional grid, divid-
ing the range of 0 into 13 slices, 0, ;¢ into 9 slices and o, ; into 15 slices. Out of resulting

1,755 combinations (13 x 9 x 15) , I select the one that minimizes the distance between the
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variances of simulated and observed FE and FR in the survey data.
During the pre-2012 period, from 1990Q2 to 2011Q4, forecasters receive a signal con-

taining a mixture of information about both 7; and €, , which they use to update their
i0 i0
forecasts 7, and €,),.

between the model-implied variance of forecast errors and the variance of observed fore-

For this period, I minimize the sum of two distances: the distance

cast errors from PGDP inflation forecasts, and the distance between the model-implied
variance of forecast revisions and the variance of observed forecast revisions. Long-run
inflation forecast errors captured by the PCE5YR data from the SPF are unnecessary over
this period, as the trend signal S f‘,T begins to play a role in the model starting in 2012.

Beginning in 2012, with the introduction of the long-run inflation target, an additional
parameter, g, is incorporated into the model. To accommodate this change, I utilize
PCES5YR survey data, which provides long-run inflation forecasts. Accordingly, the min-
imization objective is adjusted to account for the distance between the variance of sim-
ulated long-run inflation forecast errors and the variance of observed long-run inflation
forecast errors.

To estimate the model parameters, I employ a two-stage SMM approach. In the first
stage, I search for parameter values that minimize the distance between simulated and

observed moments.

2 . 2, .2 . 2
Pre-2012:(0:g pgpp = OrE,pepp)” + (OFR pGDP — OFR PGDP) (20)

2 ) 2,2 A2 2,2 "2 2
Post-2012:(0xp popp—0FE,rcpp) + (O FR PGDP~OFRPGDP)” T (OFE pCESYR~O FE,PCESYR) 2D

Note that the last term (O'%E, PCESYR — 6% E.PCESY R)2 in (21) is incorporated only for the
period 2012Q1 to 2021Q4. The parameter space for 0 is constrained by 6 = 0. In the

second stage, I compute the empirical covariance of the three moments evaluated at the

first-stage parameters 6FS, U’;ﬁ & 0{2 ST) , invert it to derive the optimal weighting matrix W,

*

and then estimate the second stage parameters (0%, 07, .., 0, ;) that minimize the following

quadratic form

N
2 2 2 2 2 2
(UFE,PGDP’ OFRr,pGDP’ Y FE,PCES5 YR) w (UFE,PGDP’ OFRr,pGDP’ Y FE,PCES5 YR) (22)
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0 Ov,te Ov,1e Ov,te Ov,1

V7o N I o
(1990Q2-2011Q4)
Mixed signal only 0.956 5.961 3.894 3.260 -
[0.85,1] [4.628,7.105] [3.023,4.640] [2.53, 3.885]
Mixed signal&target  0.928 5.66 3.696 3.102 3.762

[0.65,1] [3.736,7.105] [2.440,4.640] [2.01,3.554] [0.456,9.176]

(1990Q2-2021Q4)
Mixed signal&target  0.736 7.074 4.614 3.866 2.357

(0.4,1] [4.914,11.530] [3.246,5.03] [3.05,4.038] [1.435, 3.443]

Note: The numbers in square brackets indicate a 90% confidence interval. 6 is assumed to lie
within the interval [0, 1].

Table 3: SMM Estimates of 0, 0 ;- and o ¢

where

2 _ 2 A
g pGpp = 9FE,PGDP ~ 0 FE PGDP 0, 0v,16,) O 1)

2 _ 2 A2
R pGpp = 9FRPGDP ~ OFR PGDP (0 Ov 16, Ov,7)

2 _ 2 A
OFE pcEsYR = 9FE,PCE5YR ~ 9 FE,PCE5YR 0,0v,:0v,1)

2 _ 2 . o
¥E.PCESYR = OFEPCESYR ~ O FE,pcEsY RO Ov,1e0v,7) I8 in

corporated only for periods since 2012. For the time period between 1990Q2 and 2011Q4,

It is important to note that o

2 2 . . .
only 0% pgpp aNd 0%y ppp are taken into account. Finally, to construct confidence in-

tervals for the parameter estimates, I perform 200 bootstrap replications.

6.3 Estimation of Parameters

By comparing Smooth DE based solely on the mixed signal with Smooth DE that incor-
porates both the mixed signal and an additional trend signal — representing the Federal
Reserve’s statement — it becomes evident that the inclusion of the long-term signal plays
a crucial role in reducing the severity of the overreaction in forecasts. Table 3 shows that
the value of 6 declines from 0.956 during 1990Q2-2011Q4 to 0.736 over 1990Q2-2021Q4,
which incorporates both mixed and trend signals. This clearly indicates a weakening in
the severity of departure from rational expectations post-2012. To ensure that the de-

cline in 6 is not merely a result of introducing an additional parameter for estimation, I
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Note: The figure shows the norm of the matrices Ry14j;,,-1 (3a) and \/? (3b), transformed for com-
parison of their sizes over time. The shaded areas represent the 90% confidence interval. The red
line indicates the mean, computed across 200 bootstraps, for each time period.

Figure 3: The Size of Reduction in Uncertainty and Subjective Uncertainty

re-estimate the parameters using data from 1990Q2 to 2011Q4, incorporating not only the
variances of FE and FR from four-quarter-ahead inflation forecasts as target moments,

but also the variance of FE from long-run forecasts (PCE5YR)!!

. This approach allows me
to assess whether adding the variance of long-run forecast errors as a new target moment
significantly alters 6 and o, ;. over the period 1990Q2 to 2011Q4. If there is no substantial
change compared to estimates that exclude long-run forecast errors, this would suggest
that the observed changes in 6 and o ;. from 1990Q2 to 2021Q4 are primarily driven by
the policy change, rather than by the inclusion of the additional target moment. Notably,
values for 0 and o, ;. remain largely unchanged, implying that the announcement of the
long-term target has a real effect, and that the smaller value of 0 is not caused by the in-
clusion of an additional parameter.

Furthermore, I examine changes in the effective distortion parameter ét, (—1, the re-
duction in uncertainty ratio R;.4;,,—1and subjective uncertainty before and after 2012Q1.
Turning to the uncertainty ratio, represented as a 2-by-2 matrix, [ use the Frobenius norm
to compare its magnitude. In the left graph of Figure 3, a decline in the norm of Ry147,1-1
is observed starting in 2012Q1, suggesting that the long-term inflation goal had an im-

mediate effect in reducing uncertainty. This implies that the posterior variance from in-

'The PCE5YR forecast survey only began in 2007. Therefore, I include the total variance of PCE5YR fore-
cast errors over the period 2007Q1-2011Q4.
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2011Q4 2012Q1 2012Q2 2012Q3

0.599 -0.188 0.513 -0.145 0.545 -0.137 0.559 -0.133
-0.000 0.712 -0.000 0.713 -0.000 0.713 —0.000 0.712

Note: For each of the matrices, the element at [1,1] reflects how much Tiﬁoverreacts (or underre-

acts) to news about 7. Similarly, the element at [1,2] indicates how much 759 overreacts (or under-

tt
ltl? overreacts (or underreacts)

to news about 7, while the element at [2,2] captures the extent to which 5?\? overreacts (under-
reacts) to news about €;. A positive value indicates overreaction, while a negative value indicates

underreaction. Each element of the matrices is the mean computed across 200 bootstraps.

reacts) to news about ;. The element at [2,1] measures how much ¢

Table 4: Effective Distortion Matrix ém_l After 2012

formation updates decreases compared to the prior variance before receiving new in-
formation as soon as the announcement is publicized. From 2014Q4 onward, this ratio
converges and stabilizes at a lower level than pre-2012 levels. This reduction is primar-
ily driven by a significant decline in uncertainty about the trend component. Across 200
bootstrap samples, the first element of R 4s,—1[1,1], Which captures the reduction in con-
ditional posterior uncertainty around trend 7, relative to conditional prior uncertainty be-
fore the information update, shows an average reduction of approximately 7.8% between
2011Q4 and 2012Q1. By contrast, the variance ratio reduction for the cyclical component
€1, Reyajrr-112,2), remains consistently around 0.99, indicating that the decline in uncer-
tainty for the cyclical component due to information updates is minimal, regardless of the
presence of the additional signal. As shown in the right graph of Figure 3, subjective uncer-
tainty \/? also declines alongside R;.4)s, -1 from 2012Q1, aligning with empirical evidence
from survey data.

The effective distortion, ét_ -1, reflects how the reduction in uncertainty affects overre-
action to signals. Since 0, ,_; is a 2-by-2 matrix, an element-wise comparison is required.
Table 4 presents the effective distortion matrix around 2012Q1. In forecasting Tiﬁ, the de-
gree of overreaction responding to news decreases since 2012, whereas in forecasting eiﬁ,
there is little change in the degree of overreaction before and after 2012. A closer examina-
i
into two parts: 1) reaction to new information about the trend component and 2) reaction

tion reveals that the overreaction in the belief updating process for 7}, naturally divides
to new information about the cyclical component. The overreaction triggered by news
regarding 7,, captured by 8, ; 111 1), clearly diminishes after 2012, suggesting that the an-
nouncement plays a role in making trend forecasts more rational. Interestingly, when it

comes to news related to the cyclical component, captured by 0 t,t-1[1,2), individuals’ fore-
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casts consistently underreact to news both before and after 2012 @ t,t-111,2] < 0). This sug-

gests that, while individuals tend to overreact to news about the trend component when
i0
te’
cyclical component, thereby helping to stabilize their long-term trend forecasts.

updating their beliefs, 7°'~, they counterbalance this by underreacting to news about the

Moreover, there is no substantial difference in the severity of overreaction in terms of

expectations regarding the cyclical component ¢, before and after 2012. The overreaction
i0
tt
ponent, and 2) reaction to new information about the cyclical component. Forecasters

pattern of ¢, can also be divided into 1) reaction to new information about the trend com-

clearly overreact to news about the cyclical component (0, ;_1(2,2] > 0), and the magnitude
of this overreaction does not change across the pre- and post-2012 periods. Interestingly,

there is neither overreaction nor underreaction of forecasts e’tﬁ to news about the trend

in either period. The element 0, , 121 which measures the extent to which forecasts of

the cyclical component ¢; overreact to news about the trend, remains near zero both be-
i,0
te’
adjust their forecasts even in the context of trend-related information, regardless of their

fore and after 2012. This implies that when updating forecasts €', individuals rationally
awareness of government policy goals.

In conclusion, the evidence strongly suggests that the public announcement of the
long-term inflation target reduces the extent of overreacting expectations related to the
trend by lowering conditional variance. This, in turn, leads to greater confidence in fore-
casts, as reflected by a reduction in subjective uncertainty. However, the overreaction of

the cyclical component remains largely unaffected.

6.4 Simulations

Building on the estimation results discussed earlier, I conduct simulations to explore what
would have happened if there had been no policy change in 2012, meaning agents would
have continued to receive only the mixed signal while the actual data remained unchanged.
[ assume a panel of 1,000 hypothetical agents predicting four-quarter-ahead inflation un-
der two scenarios. In the first scenario, agents receive both the mixed signal and the trend
signal since 2012. Using the parameters 6 = 0.736, % = 2.357 , and % = 3.866, the
agents form forecasts over the periods from 1990Q2 to 2021Q4. In the second, counterfac-
tual scenario, the agents rely solely on the mixed signal, without receiving the long-term
inflation target after 2012. For this scenario, the distortion parameter 6 = 0.956, and the
mixed signal generated in the first scenario is applied over the period 1990Q2 to 2021Q4.

This implies that, since 2012, the difference between the two lines in Figure 4 is driven
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— RMSE of Simulated SDE w/ 2 Signals
- - RMSE of Simulated SDE w/ 1 Signal

2012Q1

Note: The root mean squared error (RMSE) is calculated across 1,000 samples for
each period. For actual data, I use the median forecast from the SPE so RMSE; =

100 (simulated SDE; .~ med.SPF,)? . . . .
iy (oimulate 000 me . This figure shows the time-varying RMSE;: the red line repre-

sents the RMSE of the simulation with two signals, while the blue dashed line indicates the RMSE
with only one signal after 2012. A lower RMSE indicates closer alignment with actual forecasts.

Figure 4: Simulated Four-Quarter-Ahead Inflation Forecasts

solely by the trend signal.

The comparison between these two simulation scenarios highlights the impact of re-
ceiving an additional signal on inflation forecasts. Figure 4 presents the root mean squared
error (RMSE) of simulated Smooth DE under both scenarios, illustrating which simulation
aligns more closely with surveyed forecasts. Despite using different 6 values in each sce-
nario, prior to 2012, the Smooth DE with one signal and the Smooth DE with two signals
display similar explanatory power. After 2012, however, the Smooth DE with two signals
more closely fits the median SPF data, suggesting that this estimation better captures the
formation of actual expectations. Following the onset of Covid-19, the RMSE under the
two-signal case rapidly increases, illustrating a growing divergence between simulated
Smooth DE and the actual forecasts reported in the survey. In reality, the fundamental
shock to the economy may have diminished trust in the Federal Reserve’s messaging, lead-

ing forecasters to place less weight on direct information from the Federal Reserve about
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Note: The red line represents the magnitude of deviation of the simulated SDE with 2 signals from
rational expectations (RE), while the blue dashed line indicates the extent to which the simulated
SDE with one mixed signal deviate from RE.

Figure 5: The Extent of DE Deviation from RE

trend inflation. Instead, forecasters may have increasingly relied on the single mixed sig-
nal, adjusting their belief-updating behavior as though they were receiving only one sig-
nal. Consequently, since 2019, the counterfactual scenario where forecasters receive only
the mixed signal might more accurately reflect actual forecasts observed in the SPE Addi-
tionally, in August 2020, the Federal Reserve’s adoption of Flexible Average Inflation Tar-
geting, which shifted monetary policy toward a more lenient stance rather than strictly
targeting 2% inflation, may have made the Federal Reserve’s messages seem somewhat
vague or less direct to recipients.

Figure 5 further illustrates that including two signals significantly reduces the devia-

tion from RE. The deviation from RE is calculated using the following formula '?

o SmoothDE - RE
deviation = ,
RE

and the results are averaged across the 1,000 panelists and presented in Figure 5. The

12Rational expectations (RE) are calculated under the assumption that 6 = 0.
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Note: The red line shows the interquartile range for each period based on forecasts with two signals
received since 2012, while the blue dashed line represents the interquartile range under a counter-
factual scenario in which agents, after 2012, continue to receive only one mixed signal.

Figure 6: Belief Dispersion of 1-Year Ahead Simulated Inflation Forecasts

graph reveals that deviations are similar before 2012 across both scenarios, but post-2012,
the scenario with only one signal becomes increasingly volatile. These findings suggest
that sharing a long-term inflation target with the public brings individuals’ expectations
closer to rational expectations, thereby limiting over-reaction.

In addition, the analysis of forecast dispersion, as shown in Figure 6, demonstrates that
sharing a longer run target decreases disagreement among forecasters. The heterogeneity
in expectations is primarily driven by information frictions, specifically by the heteroge-
neous signals that forecasters receive. If the Federal Reserve provides a transparent signal
regarding a long-term trend, individuals’ information sets will contain less uncertainty as
they update them. With this current-period news, individuals recognize that the updated
information is more accurate, prompting them to rely less on past memories and more on
the true density conveyed by the current news. Consequently, representativeness, mea-
sured with respect to reference information, diminishes in its influence on belief updates,
reducing the tendency for overreaction to heterogeneous news across agents. As the ef-
fect of heterogeneous signals on expectations formation decreases, disagreement among
forecasts also declines. This aligns with previous studies showing that well-anchored in-
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Parameters Prior Posterior Mean Std. Error Posterior Distribution (90%)

Pe B 0.554 0.116 [0.345, 0.726]
Y B 0.739 0.110 [0.542, 0.904]
o? IG 0.195 0.023 [0.159, 0.235]

Table 5: Estimated Parameters

flation expectations are typically associated with lower dispersion in individual forecasts
(Naggert, Rich and Tracy, 2023; Brito, Carriere-Swallow and Gruss, 2018; Ehrmann, 2018;
Dovern, Fritsche and Slacalek, 2012).

To measure disagreement, I use the IQR of point forecasts following the methods of
Abel et al. (2016), Glas and Hartmann (2016) and Lahiri and Sheng (2010). Figure 6 shows a
noticeable decrease in the dispersion of four-quarter-ahead inflation forecasts after 2012,
which aligns with the observed SPF data. This reduction in dispersion likely stems from a

decrease in disagreement among forecasts about the trend component.

7 Robustness

I explored SMM estimates and analyzed changes and evolving patterns in subjective un-
certainty, reduction in uncertainty, and the effective distortion parameter. These analy-
ses build on fundamental parameters driving inflation dynamics, which were estimated
through Bayesian estimation. However, the SMM estimates and simulations may be sen-
sitive to the specific parameter values obtained from the Bayesian estimation. To assess
robustness, I use alternative parameters derived from different prior distributions. If the
new SMM estimates replicate the observed changes and evolving patterns in all three
dimensions—subjective uncertainty, reduction in uncertainty, and the effective distortion
parameter—it supports the model’s validity.

Since the share of the inflation shock attributed to the cyclical component, y, must lie
between 0 and 1, and the volatility of the fundamental shock, o, must be greater than zero,
the priors for these parameters remain unchanged. However, the prior for p. is adjusted
in this exercise by assuming a beta prior distribution. Table 5 indicates that the posterior
mean of p. increases significantly from 0.377 to 0.554, while o> decreases. Based on these
results, I now assess whether alternative fundamental parameters affect the outcomes of
the SMM estimation.

As shown in Table 6, the value for 0 is 0.741, which is not substantially different from
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the previous value of 0.747. However, the size of the noise noticeably decreases in both
mixed and trend signals. In particular, the noise in the trend signal is remarkably small,
suggesting that individuals place a high level of trust in the Federal Reserve’s announce-
ments regarding long-term inflation targets. This reflects the fact that individuals heavily
weigh the Federal Reserve’s statements when updating their beliefs in response to new
information. As a result, the ratio of posterior variance to prior variance, or uncertainty

reduction, falls sharply in the first quarter of 2012 (Figure 7a).

0 Ov,te Ov,1e Ov,1e Oyt
Va-yo VYo o Y

(1990Q2-2021Q4)
Mixed signal&target  0.741 1.643 0.977 0.840 0.338
[0.4,1] [1.105,1.696] [0.657,1.009] [0.565,0.867] [0.236,0.522]

Note: The numbers in square brackets indicate a 90% confidence interval. 0 is assumed to lie
within the interval [0, 1].

Table 6: SMM Estimates of 0, 0 ;. and g ;

Typically, the largest reduction in uncertainty occurs when the long-run inflation tar-
get is initially released, followed by a gradual increase in uncertainty as the effect dissi-
pates over time. However, in this analysis, the high degree of trust in the Federal Reserve’s
announcements about the trend component lead to a prolonged effect, with uncertainty
remaining low. Even after the initial sharp decline, the graph shows only a very slight in-
crease, indicating that the reduction in uncertainty has persisted for an extended period.
Consequently, both the subjective uncertainty and the reduction in uncertainty graphs
exhibit only minimal increases after 2012Q1, as shown in Figure 7.

As a result of the Federal Reserve’s new policy, individuals rely less on memory and
place greater emphasis on current news when forming forecasts, thereby mitigating over-
reaction.

As shown in Figure 7 the key findings hold consistently, regardless of the parameter
values estimated through Bayesian methodology. However, the persistence of the policy’s
impact depends on the level of trust in the Federal Reserve. The greater the trust, the
longer individuals maintain confidence in their beliefs.

In addition, Table 7 shows a significant decline in the element 8, ;_1(; 1}, dropping from
0.436 to 0.022 in 2012Q1. This drop aligns with the pattern observed in previous analysis,
reinforcing the idea that the announcement helped bring trend forecasts closer to rational

expectations. Similarly, 0 tt-1[1,2] and 0 1, —12,1] retain their negative signs, in line with the
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Note: The figure shows the norm of the matrices R;44)1,;~1(7a) and \/? (7b), transformed for com-
parison of their sizes over time. The shaded areas represent the 90% confidence interval. The red
line represents the mean, computed across 200 bootstraps, for each time period.

Figure 7: The Size of Reduction in Uncertainty and Subjective Uncertainty

2011Q4 2012Q1 2012Q2 2012Q3

0.436 —-0.302 0.022 -0.016 0.061 -0.019 0.063 -0.019
-0.273 0.465 0.046 0.244 —0.032 0.249 -0.035 0.249

Note: For each of the matrices, the element at [1,1] reflects how much 7

1,0
tit .
acts) to news about 7. Similarly, the element at [1,2] indicates how much Tlt’g overreacts (or under-
i‘lz overreacts (or underreacts)

to news about 7, while the element at [2,2] captures the extent to which Siﬁ overreacts (under-
reacts) to news about €;. A positive value indicates overreaction, while a negative value indicates

underreaction. Each element of the matrices is the mean computed across 200 bootstraps.

overreacts (or underre-

reacts) to news about ;. The element at [2,1] measures how much ¢

Table 7: Effective Distortion Matrix 0, ,_, Post-2012
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findings reported in Table 4. In contrast to the earlier analysis, 0, ;_12,2 exhibits a notice-

able decrease after 2012.

8 Analysis Using a New Keynesian Model

Extending the partial equilibrium setup, [ incorporate the smooth diagnostic expectations
(DE) framework into a New Keynesian (NK) model to examine whether the Federal Re-
serve’s inflation target announcement contributes to stabilizing realized inflation. The
three-equation NK model augmented with diagnostic expectations follows L'Huillier et al.
(2023). My model differs from the original in two key respects: (1) agents form smooth
diagnostic expectations rather than canonical diagnostic expectations, and (2) agents re-
ceive noisy signals about inflation. As described in Section 5, it is assumed that agents

infer 7; and €, separately from signals.

Ve =Eelfrial = (Gr = @04l + 00T —Ey_1[7114])) (23)
s = PE [ rsal + k(7 — Gy) (24)
it = Gnit+ Px(Fr — ar) (25)

where x = % (1+v)!3, and the aggregate TFP shock processes are given by

ar = Pqalr-1+E€qy¢ (26)

where €,,; ~ i1dN(0, 1).

Note that variables with a bar denote log deviations from steady state. Under the
closed-economy assumption, j; = ¢;. The expectation operator with superscript 6, EY,
smooth diagnostic expectations, while the expectation operator without superscript, E,
denotes rational expectations. Inflation expectations ([E? (7Wrral,BEr_1[7s14]) are formed de-
scribed in Proposition 3 of Subsection 5.3, and all expectations are subject to noisy in-

formation. Since only inflation expectations have been modeled as shaped by smooth

13y is inverse Frisch elasticity, v p is Rotemberg pricing parameter, €, > 1 is the elasticity of substitution

in intermediate good’s demand. Each parameter is not separately identified in estimation. More details are
found in U'Huillier et al. (2023).
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diagnostic expectations so far, output expectations are assumed to follow rational expec-
tations.

The analysis uses annualized quarterly data for inflation, output growth, and the in-
terest rate, the expected variables (E;[ _)7t+4],[E? (44, Er—1[7T4+4]) are replaced with four-
quarters-ahead expectations to align with the Survey of Professional Forecasters (SPF)
four-quarters-ahead median forecasts for real GDP (RGDP) and the GDP deflator (PGDP).
This specification is motivated by two considerations. First, one-quarter-ahead SPF fore-
casts are relatively noisy and less informative about agents’ perceived policy stance. Sec-
ond, since this exercise aims to evaluate how transparent communication of the Federal
Reserve’s long-run inflation target mitigates individuals’ overreactive short-term belief up-
dates, matching the model’s expectation horizon to the SPF’s one-year-ahead forecasts
provides a more relevant empirical counterpart. The realized data are obtained from the
FRED database!. Using the RISE toolbox, I estimate the uncertainty ratio matrix R under
the assumption of a regime shift in 2012 and generate impulse response functions for the
two regimes. Except for the ratio R, all other parameters are assumed to be non-switching.
The estimated variables are reported in Appendix I.

Based on the estimation results, I generate impulse responses of output, inflation, and
the interest rate to a cost-push shock, a monetary policy shock, and a demand shock with
horizon = 20 quarters (Figure 8). Starting with the monetary policy shock, the log de-
viation of inflation, 77;,exhibits lower volatility under the regime with the Fed’s inflation
target, while output barely responds. The reduced volatility of 77; reflects less overreactive
smooth DE, ﬂi‘? [7:+1], as agents anticipate that inflation will revert toward its normal level.
Because expectations react less strongly to news and trend inflation expectations is more
firmly anchored, realized inflation declines only modestly in response to the shock. Con-
sequently, the nominal interest rate displays a slightly larger deviation, consistent with the
Taylor rule’s response to a relatively stable inflation path.

In response to a demand shock, the difference in the log deviation of y; between the
two regimes is negligible because y; follows rational expectations in this calibration, and
the ex-ante real interest rate term remains similar across the two regimes. The gap in the
real rate between the regime with the Fed’s target and that without the target is less than
0.005, resulting in seemingly identical output responses. In both regimes, however, 7; and
i; show lower volatility under the Fed’s inflation target.

In the case of a cost-push shock, smooth diagnostic expectations react less to the dis-

14The series names are GDPC1, FEDFUNDS, and GDPDEE respectively.
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turbance, thereby reducing the forward-looking component of the Phillips curve. The
weaker Phillips amplification of the cost shock yields a smaller and less persistent re-
sponse of inflation, and consequently, a more muted adjustment in the nominal interest
rate through the Taylor rule. Regardless of the shock type, inflation responds with lower
volatility under the Fed’s inflation target, reflecting the stabilizing role of the Fed’s infor-

mation sharing in shaping inflation expectations.

9 Conclusions

The success of monetary policy hinges on clear and accurate communication of its plans
and goals. Given that short-term inflation expectations can influence everyday decisions,
such as consumer spending, it is essential to examine whether monetary policy affects
short-term inflation forecasts. The key takeaway of this paper is that sharing precise nu-
merical targets with the public not only anchors long-term inflation forecasts but also
shapes short-term forecasts in a more rational and less distorted manner. When estimat-
ing future states, individuals rely on the representativeness heuristic, assigning greater
weight to salient memories rather than objectively assessing probabilities. However, when
provided with accurate information, individuals reduce their reliance on subjective re-
call and form expectations based on more objective likelihood of future outcome deliv-
ered, thereby mitigating over-reaction to news. This paper specifically focuses on the 2012
Statement on Longer-Run Goals and Monetary Policy Strategy, which provided concrete
information on trend inflation, significantly reducing inflation forecast uncertainty and
enhancing individuals’ confidence in their forecasts.

Adding such an additional, reliable signal—compared to relying solely on one source—
facilitates more rational belief updating and, consequently, reduces disagreement among
individuals. While the decrease in long-term inflation forecast dispersion stems from the
anchoring effect, the narrowing of short-term inflation forecast dispersion appears to re-
sult from lessened over-reaction to incoming information. This shift leads to expectations
that align more closely with rational expectations, thereby reducing disagreement.

Moreover, I assume a stable economic environment, contributing to the broader un-
derstanding of how policy communication affects expectations in relatively calm peri-
ods. However, in times of severe disruptions—such as the Covid-19 pandemic or the war
between Russia and Ukraine—subjective uncertainty and effective distortion may rise,

particularly if agents doubt the sufficiency of transparent communication during such
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shocks. Future research could examine the role of fundamental shocks in shaping inflation
expectations, specifically assessing how these shocks interact with policy communication
strategies and whether these strategies can mitigate heightened subjective uncertainty in
turbulent times.

Integrating this expectations-formation framework into a standard three-equation New
Keynesian model further shows that announcing the inflation target helps stabilize the re-
sponses of realized inflation to various structural shocks. Within this limited framework
where, for simplicity, only output expectations are assumed to follow rational expecta-
tions, the model demonstrates that the Fed’s target announcement effectively reduces
agents’ overreaction to current news under smooth diagnostic expectations, thereby con-
tributing to the stabilization of realized inflation.

Although this paper includes the Covid-19 period, it treats shocks from these disrup-
tions as drawn from the same distribution as those in normal times. Extending this work
could involve exploring policy guidance’s role during extreme events modeled with a state-
dependent approach, where shocks might come from a different normal distribution with
a higher mean and variance. Such a model would capture how extreme shocks influence
the degree of over-reaction and the shift in conditional uncertainty. This approach could
also shed light on whether the interaction between uncertainty in news and fundamental
shocks results in amplification or dampening effects. Understanding whether transparent
communication by the Federal Reserve can reduce distortion and curb over-reactive belief
adjustments under these conditions would provide valuable insights for policy design in

periods of heightened uncertainty.
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Appendices

A Survey of Professional Forecasters
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Figure 9: U.S. Business Indicators
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B Survey of Professional Forecasters

Please indicate what probabilities you would attach to the various possible percentage
change (annual-average over annual-average) in the chain-weighted GDP price index. The

probabilities of these alternative forecasts should add up to 100.

Probability of indicated
percent change in chain-
weighted GDP price index

2023-2024 | 2024-2025

4 percent or more

3.5 to 3.9 percent

3.0 to 3.4 percent

2.5 10 2.9 percent

2.0 to 2 4 percent

1.5 to 1.9 percent

1.0 to 1.4 percent

0.5 to 0.9 percent

0.0 to 0.4 percent
Will decline
TOTAL 0 0

Note: This question is included in the survey distributed in the second quarter of 2024.

Figure 10: Probabilities of Year-Over-Year Changes in the GDP Price Index
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C Subjective Uncertainty in Fixed-Event Inflation Forecasts
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Note: The figure shows subjective uncertainty measured in fixed-event forecasts from the SPE

The blue line with circles depicts the median subjective uncertainty, expressed in standard devia-
tions, for current-year inflation. The red dashed line illustrates the median subjective uncertainty,
also expressed in standard deviations, for next-year inflation. A normal distribution is fitted to
individual-level survey data, from which the standard deviations are derived.

Figure 11: Inflation Rate
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D Subjective Uncertainty in Fixed-Event Non-Inflation Fore-

casts
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Note: The figure shows subjective uncertainty measured in fixed-event forecasts from the SPE The
blue line with circles depicts the median subjective uncertainty, expressed in standard deviations,
for current-year percentage change in real GDP. The red dashed line illustrates the median sub-
jective uncertainty, also expressed in standard deviations, for next-year percentage change in real
GDP. A normal distribution is fitted to individual-level survey data, from which the standard devi-

ations are derived.

Figure 12: Percentage Change in Real GDP
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Note: The figure shows subjective uncertainty measured in fixed-event forecasts from the SPE The

blue line with circles depicts the median subjective uncertainty, expressed in standard deviations,
for current-year civilian unemployment rates. The red dashed line illustrates the median subjective
uncertainty, also expressed in standard deviations, for next-year civilian unemployment rates. A
normal distribution is fitted to individual-level survey data, from which the standard deviations

are derived.

Figure 13: Unemployment Rate
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E CG Tests of Other Macroeconomic Variables

indicates significance at the 1% level. **indicates significance at the 5% level,
and *indicates significance at the 10% level.

1990Q2- 2012Q1- 1990Q2- 1990Q2- 2012Q1- 1990Q2-
2011Q4 2022Q1 2022Q1 2011Q4 2022Q1 2022Q1
B -0.022 —-0.799 -0.351** ) ) )
0 (0.151) (0.375) (0.172)
B 0.225 —-0.543* —0.299 0.094 —0.557* —0.345
! (0.220) 0.295) 0.266) 0.194) (0.310) 0.279)
Obs. 2320 1182 3554 2312 1177 3543
FE No No No Yes Yes Yes
Note: CG test results using IV regression. Obs. indicates the sample size. Robust standard errors
are in parentheses;***i

(a) Percentage Change in Real GDP

indicates significance at the 1% level. **indicates significance at the 5% level,
and *indicates significance at the 10% level.

1990Q2- 2012Q1- 1990Q2- 1990Q2- 2012Q1- 1990Q2-
2011Q4 2022Q1 2022Q1 2011Q4 2022Q1 2022Q1
F; 0.041 —0.146 0.0231 ) ) )
0 (0.094) (0.297) (0.127)
B 0.670*** —0.472** -0.279 0.530*** —0.492*** —-0.307
! (0.230) (0.188) (0.293) (0.200) (0.190) (0.276)
Obs. 2413 1274 3741 2407 1270 3733
FE No No No Yes Yes Yes
Note: CG test results using IV regression. Obs. indicates the sample size. Robust standard errors
are in parentheses;***i

(b) Unemployment Rate

Table 8: CG Test Results at Individual Level
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F Bayesian Estimation

[ assume prior distributions as

pe ~N(ip,05)

g% ~ ﬂG(agzyﬁUz),

and set hyper-parameters as follows.

hyper-parameters Value

Ko 0.15
05 0.01
ay 18
By 3
a2 15
By 11

For initial values x© = (p?,y©, o), I guess unconditional mean of prior distribu-

tions.

A normal prior distribution is selected for p., anticipating that isolating the cyclical
component after removing the trend in inflation would result in lower persistence of shocks.
While the trend component captures long-term patterns, the cyclical component focuses
on short-term economic fluctuations. This may cause the autocorrelation coefficient in
an AR(1) model to approach zero or even become negative. To account for this potential
variability, a normal prior is considered appropriate for p.. In contrast, y, representing a
share ratio constrained to the interval [0, 1], is modeled using a beta distribution, which is
optimal for such bounded parameters. Lastly, given that o is strictly positive, an inverse-
gamma distribution is chosen for its prior. A burn-in period of 10,000 iterations out of
100,000 draws is employed, discarding the initial samples to stabilize the parameters and
enhance the reliability of the posterior distribution.

The following figure plots prior and posterior distributions.
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G Proof of Proposition 3

We start by rewriting equation (18)

— 1 . ~ .
exp (=5 o =L, Er by e = 3L

0 , .
7 (xpen) o _1 i Tyl o
exp (=3 (Xr+n xt+h|t) zt+h|t(x'f+h xt+h|t)

1
1 i Ty-1 _ o Z
eXp( 3 (Xeen = Xy o) ey Keen xt+h|t—l)) )

-
where x;,p, = ( Ti+h Er+h ) represents the actual realized inflation components, and

. ) ) T
l _ l l . . . -/ . .
Xine = ( Tovnir Ervhie ) denotes individual i's h-ahead inflation forecast for the trend

and cyclical components.

0
since { 2B = exp(@(a- b)),

1 ' Ty-1 '
exp (—E(xt.}.h - x;+h|l’) zt+h|t(xt+h - xi‘+h|t))

1 . ~ .
fe(xt+h) X {exp (6 { (_5 (Keen= x;+h|t)th+lh|t(xt+h - lef+h|t))

1 i Ty-1 i 1
- _E(xt+h_xt+h|t—1) t+h|t—1(xt+h_xt+h|t—1) Z

1 . ~ .
. exp (—(1 + H)E(xml =X ) e Keen = X1 )
7 (Xpen) o

i Ts-1 i
+§9(xt+h_xt+h|t—1) Zt+h|t—1('xt+h_'xt+h|t—1))E

1__ . )
0 exp (_Ezt-&hlt {(1 +0) (Xtrn— x;+h|t)—r(xt+h - x;+h|t)
F7(X1n) o 1

i T -1 i
—OXeen =Xy pyp1) ZerhieZ ooy Keen = xt+h|t—1)}) 7

By developing the squared terms and focusing on the terms involving x;.;, we arrive

at
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exp (_ t+h|t{(1 +O)V =0 i 27y 1} (x] ) Xeen
fg(x ) -1
r+h —20+0) % p (A +OT =0 1o Zenii-1) Xpppyy
-1 .
+29xt+h (A+OT=6ZpspiiZremi1) Zl‘+h|tzt+h|t—1x;+h|t—l)).

This equation represents the kernel of a normal density with the following mean

(xHh) ((1+9)I 92t+h|tzt+h|t 1) ((1+6)xt+h|t 92t+h|tzz+h|t 1 t+h|t 1)
=(1+I—0Rpp-1) ((1 +6)xt+h|t OR¢inir, - lx,f+h|,; 1)
= (1 +9)I_6Rt+h|t,t—l)_l x£+h|t +0(L+)I=0R 1 pys,-1) Rt+h|t,t—1(Rt__:h”yt_lx;;h” _x§+h|t—1)
= (I+0( = Respir, 1) xhypy +0 (140U = Revnt,r-1)) ™ Recnio1 Ry Ly 1 Xpe = X pey)
= (I+0U = Respje-1)) " %L, 40 (T+0U = Resnyei-1)) ™ Resnit,—1 Rytys i1 s e
—OR pyt,t-1 (I+9(I_Rt+h|t,t—1))_1 xi+h|t—1

-1 _; -1
={I+0I) (I+9(I_Rt+h|t,t—1)) x;+h|t —ORiinyr, -1 (I+9(I—Rt+h|t,t—1)) xll,‘+h|t—l

WheI‘e Rt+h|l’ -1 — ZHM[Z Slnce I+BI = I+ H(I— Rt+l’l|t,[—].) + 9Rt+h|t,t—l! it fOl-

t+h|t-1°
lows that

0 -1
[E; (X¢rn) = (1+9(I—Rz+h|t,t—1) +6Rt+h|t,t—l) (I+9(I—Rt+h|z,t—1)) x;+h|t
—OR i hit, -1 (I"' H(I_RHhIt,t—l)) x;+h|t—l
. -1 -1 i
x;+h|t+9Rt+h|t,t_1 (I+0(I—Rt+h|t,t—1)) ;+h|t —OR pyt,t-1 (I+9(I—Rt+h|t,t—1)) lef+h|t—1

X e FOR i1 ([0 = Reepe,e-1) Gl = X))

Let me define the effective distortion parameter 8 ;1 = Ry 1, -1 (I + 0 — Ryyp t,t_l))_l
reflecting the change in uncertainty Ry, ps,¢-1-

Due to information frictions, we assume that x;” =x

that )7 e = (1 1 B Goam =( 1 p JE (00,

i i_ i 15 :
t|t—1+Kt(st xtlt—l) , and given

15K; denotes the Kalman gain matrix.
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Ei’g(ntm):( 11 ) (I+ét,t—1)xi+h|t_étvf—1xlé+hlf—1]

|
)(I+ér,t—1) [xilt—l-i_Kt(Si_xilt—l)]_( 1 pf )éfrt—lxilt—l
)

* Let us begin by considering the signal for individual i at time ¢ which holds until the

year of 2012.

si=si=(1 1) " |+oveevi
t— “YtTe T £ VTEY 1€
t

Using this, the expected inflation for individual i is given by

0 = (1 pl )by (4 0001) Kt x|

Titlt-1 A i i i
:( 1 p? (( )+(I+9t,t—1)Kt(Tt+£t+UVnyvt,T£_Tt|t—l_£t|t—l) .
€itlr-1

where K; is a 2-by-1 Kalman gain matrix.
¢ For the year 2012 and beyond, the signal si is shifted to

Gie St NENAIR L[ ove 0 vi,
! S! 11 Er 0 Ovre Vire

t,TE

Thus the expected inflation for individual i’s updated as follows

[Ei'e(ﬂnh) = ( 1 p! ) [xilt—l + (I"'éfr’f—l)Kt(S;_xi”‘l)]

R PR EART )

€re1

where K; is a 2-by-2 Kalman gain matrix.
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Finally, the effective distortion matrix 8, ;1 = Ry pys,;—1 (I +0(I - Rt+h|t,t_1))_l isa 2-by-2
matrix. The first row captures how much the forecast on the trend component 7, over-
reacts to news about 7; and ¢;. Likewise the second row implies how much expectations
about €, are distorted in response to newly received information about 7; and ;.

The subjective uncertainty is

VO Geren) = Zponpe (1 + 0T =0 roni iy, )

-1
=2Ziine (I"’H(I— Rt+h|t,t—1))
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H Proof of Proposition 4

0011 00R:py111 (I+9(I_Rt+h|t,t—l))_l
aRl‘+h|l‘,l‘—l B aRl‘+h|l‘,l’—l

_ aeRtht,t—l

- aRl‘+h|l’,t—1

=0I(I+0U~Resnjri-1)) " = OReenis—1 (1+0U = Respy-1))” (=00 (I1+0( = Respyi-1))

=0 (I+9(I—Rz+h|t,t—1))_1 +OR 1,1 (I+9(I—Rt+h|t,t—1))_19 (I+H(I_Rt+h|t,t—l))_l

O(I+0U~Ryspjri-1)
aRt+h|t,t—l

-1
(I+9(I—Rt+h|t,t—1)) +OR i h1t-1

For zz—==—>0, the resulting matrix must be positive definite. Given that the identity
matrix I has any non-zero vector as an eigenvector, we can assume that I and R, 7,11
share the same set of eigenvectors. Consequently, the eigenvalues of the matrix I + 0(1 -

Riih1,t—1) are given by
1+60(1-A2;) fori=1,2
The matrix I + 0(I — Ry p)1,:—1) is positive definite if and only if
1+6(1-21)>0and 1+6(1—-1,)>0

given 0 > 0.
Since |Z ;1 p¢l < |Z¢1pj-1l, reflecting the fact that uncertainty decreases as the informa-

tion set is updated,

1 Z 14l

|Rt+nit,t—11 = <L

|Zt+h|t—1|

Because the eigenvalues of a covariance matrix represent the uncertainty within the
data, the eigenvalues of the updated posterior variance are smaller compared to the eigen-

values of the prior variance. This implies that

Ai<lfori=1,2.

As a result the following conditions hold.
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1+6(1-A;)>0fori=1,2

ensuring that

00,11

—>0.
aRt+h|t,t—1
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I Estimated Parameters in the New Keynesian Model

Parameters Distribution Description mode
br Normal monetary policy rule 1.3843
by Beta monetary policy rule 0.0028

K Beta slope of the Phillips curve 0.2122
Beta DE parameter 0.6051

Iy Beta persistence of a cyclical inflation 0.0258
Y Beta share of variance due to a cyclical inflation shock 0.8775
Pis Beta demand shock persistence 0.1830
Pmp Beta MP shock persistence 0.7386
Ppe Beta cost-push shock persistence 0.7331
Pa Beta tech shock persistence 0.8107
oy Inv-Gamma SD of the inflation shock 0.0154

I assume that the monetary policy shock, demand shock, and cost-push shock each
follow an AR(1) process with innovations drawn from a normal distribution N(0, 1).The
sample period covers 1996Q2-2021Q4. To estimate relative uncertainty, denoted by R;j;—1,
I assume that the subjective uncertainty estimated in Figure 1 is positively related to Rj;—.
I pin down the size of the signal noises, 0¢,r¢,0t,7,0 ourpursignai, using the standard devia-
tion of the median SPF responses over 1996Q2-2021Q4.

64



	Introduction
	Data
	Empirical Evidence
	Statement on Longer-Run Goals and Monetary Policy Strategy
	Subjective Uncertainty of Four-Quarter-Ahead Inflation Forecast
	Over-reaction of Inflation Point Forecasts

	Diagnostic Expectations and Smooth DE 
	Diagnostic Expectations 
	Smooth Diagnostic Expectations

	Model 
	Inflation Dynamics
	State-Space Model
	Smooth Diagnostic Expectations

	Estimation
	Bayesian Estimation
	Simulated Method of Moments
	Estimation of Parameters
	Simulations

	Robustness
	Analysis Using a New Keynesian Model
	Conclusions
	Survey of Professional Forecasters
	Survey of Professional Forecasters
	Subjective Uncertainty in Fixed-Event Inflation Forecasts
	Subjective Uncertainty in Fixed-Event Non-Inflation Forecasts 
	CG Tests of Other Macroeconomic Variables
	Bayesian Estimation
	Proof of Proposition 3
	Proof of Proposition 4
	Estimated Parameters in the New Keynesian Model

